A deep learning approach to diagnostic classification of prostate cancer using pathology-radiology fusion Journal Article


Authors: Khosravi, P.; Lysandrou, M.; Eljalby, M.; Li, Q.; Kazemi, E.; Zisimopoulos, P.; Sigaras, A.; Brendel, M.; Barnes, J.; Ricketts, C.; Meleshko, D.; Yat, A.; McClure, T. D.; Robinson, B. D.; Sboner, A.; Elemento, O.; Chughtai, B.; Hajirasouliha, I.
Article Title: A deep learning approach to diagnostic classification of prostate cancer using pathology-radiology fusion
Abstract: Background: A definitive diagnosis of prostate cancer requires a biopsy to obtain tissue for pathologic analysis, but this is an invasive procedure and is associated with complications. Purpose: To develop an artificial intelligence (AI)-based model (named AI-biopsy) for the early diagnosis of prostate cancer using magnetic resonance (MR) images labeled with histopathology information. Study Type: Retrospective. Population: Magnetic resonance imaging (MRI) data sets from 400 patients with suspected prostate cancer and with histological data (228 acquired in-house and 172 from external publicly available databases). Field Strength/Sequence: 1.5 to 3.0 Tesla, T2-weighted image pulse sequences. Assessment: MR images reviewed and selected by two radiologists (with 6 and 17 years of experience). The patient images were labeled with prostate biopsy including Gleason Score (6 to 10) or Grade Group (1 to 5) and reviewed by one pathologist (with 15 years of experience). Deep learning models were developed to distinguish 1) benign from cancerous tumor and 2) high-risk tumor from low-risk tumor. Statistical Tests: To evaluate our models, we calculated negative predictive value, positive predictive value, specificity, sensitivity, and accuracy. We also calculated areas under the receiver operating characteristic (ROC) curves (AUCs) and Cohen's kappa. Results: Our computational method (https://github.com/ih-lab/AI-biopsy) achieved AUCs of 0.89 (95% confidence interval [CI]: [0.86–0.92]) and 0.78 (95% CI: [0.74–0.82]) to classify cancer vs. benign and high- vs. low-risk of prostate disease, respectively. Data Conclusion: AI-biopsy provided a data-driven and reproducible way to assess cancer risk from MR images and a personalized strategy to potentially reduce the number of unnecessary biopsies. AI-biopsy highlighted the regions of MR images that contained the predictive features the algorithm used for diagnosis using the class activation map method. It is a fully automatic method with a drag-and-drop web interface (https://ai-biopsy.eipm-research.org) that allows radiologists to review AI-assessed MR images in real time. Level of Evidence: 1. Technical Efficacy Stage: 2. © 2021 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC. on behalf of International Society for Magnetic Resonance in Medicine.
Keywords: biopsy; prostate cancer; artificial intelligence; pi-rads; deep neural networks; mri images
Journal Title: Journal of Magnetic Resonance Imaging
Volume: 54
Issue: 2
ISSN: 1053-1807
Publisher: Wiley Blackwell  
Date Published: 2021-08-01
Start Page: 462
End Page: 471
Language: English
DOI: 10.1002/jmri.27599
PUBMED: 33719168
PROVIDER: scopus
PMCID: PMC8360022
DOI/URL:
Notes: Article -- Export Date: 2 August 2021 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors