Abstract: |
Anaplastic large-cell lymphomas (ALCLs) encompass at least 2 systemic diseases distinguished by the presence or absence of anaplastic lymphoma kinase (ALK) expression. We performed genome-wide microRNA (miRNA) profiling on 33 ALK-positive (ALK[+]) ALCLs, 25 ALK-negative (ALK[-]) ALCLs, 9 angioimmunoblastic T-cell lymphomas, 11 peripheral T-cell lymphomas not otherwise specified (PTCLNOS), and normal T cells, and demonstrated that ALCLs express many of the miRNAs that are highly expressed in normal T cells with the prominent exception of miR-146a. Unsupervised hierarchical clustering demonstrated distinct clustering of ALCL, PTCL-NOS, and the AITL subtype of PTCL. Cases of ALK(+) ALCL and ALK(-) ALCL were interspersed in unsupervised analysis, suggesting a close relationship at the molecular level. We identified an miRNA signature of 7 miRNAs (5 upregulated: miR-512-3p, miR-886-5p, miR-886-3p, miR-708, miR-135b; 2 downregulated: miR-146a, miR-155) significantly associated with ALK(+) ALCL cases. In addition, we derived an 11-miRNA signature (4 upregulated: miR-210, miR-197, miR-191, miR-512-3p; 7 downregulated: miR-451, miR-146a, miR-22, miR-455-3p, miR-455-5p, miR-143, miR-494) that differentiates ALK(-) ALCL from other PTCLs. Our in vitro studies identified a set of 32 miRNAs associated with ALK expression. Of these, the miR-17∼92 cluster and its paralogues were also highly expressed in ALK(+) ALCL and may represent important downstream effectors of the ALK oncogenic pathway. |
Keywords: |
adolescent; adult; child; preschool child; aged; aged, 80 and over; child, preschool; middle aged; young adult; genetics; cancer staging; neoplasm staging; t lymphocyte; t-lymphocytes; metabolism; microrna; cluster analysis; gene expression; gene expression profiling; rna interference; pathology; cell line, tumor; protein tyrosine kinase; gene expression regulation; gene expression regulation, neoplastic; membrane antigen; tumor cell line; organ specificity; antibody specificity; immunophenotyping; large cell lymphoma; receptor protein-tyrosine kinases; micrornas; antigens, surface; anaplastic lymphoma kinase; lymphoma, large-cell, anaplastic; gene order; very elderly; humans; human; male; female; article
|