A single-cell atlas of the human healthy airways Journal Article


Authors: Deprez, M.; Zaragosi, L. E.; Truchi, M.; Becavin, C.; Ruiz GarcĂ­a, S.; Arguel, M. J.; Plaisant, M.; Magnone, V.; Lebrigand, K.; Abelanet, S.; Brau, F.; Paquet, A.; Pe'er, D.; Marquette, C. H.; Leroy, S.; Barbry, P.
Article Title: A single-cell atlas of the human healthy airways
Abstract: Rationale: The respiratory tract constitutes an elaborate line of defense that is based on a unique cellular ecosystem. Objectives: We aimed to investigate cell population distributions and transcriptional changes along the airways by using single-cell RNA profiling. Methods: We have explored the cellular heterogeneity of the human airway epithelium in 10 healthy living volunteers by single-cell RNA profiling. A total of 77,969 cells were collected at 35 distinct locations, from the nose to the 12th division of the airway tree. Measurements and Main Results: The resulting atlas is composed of a high percentage of epithelial cells (89.1%) but also immune (6.2%) and stromal (4.7%) cells with distinct cellular proportions in different regions of the airways. It reveals differential gene expression between identical cell types (suprabasal, secretory, and multiciliated cells) from the nose (MUC4, PI3, SIX3) and tracheobronchial (SCGB1A1, TFF3) airways. By contrast, cell-type-specific gene expression is stable across all tracheobronchial samples. Our atlas improves the description of ionocytes, pulmonary neuroendocrine cells, and brush cells and identifies a related population of NREP-positive cells. We also report the association of KRT13 with dividing cells that are reminiscent of previously described mouse "hillock" cells and with squamous cells expressing SCEL and SPRR1A/B. Conclusions: Robust characterization of a single-cell cohort in healthy airways establishes a valuable resource for future investigations. The precise description of the continuum existing from the nasal epithelium to successive divisions of the airways and the stable gene expression profile of these regions better defines conditions under which relevant tracheobronchial proxies of human respiratory diseases can be developed.
Keywords: bronchus; neural crest; epithelium; trachea; epithelial-cells; nose; nasal; basal; single-cell rnaseq
Journal Title: American Journal of Respiratory and Critical Care Medicine
Volume: 202
Issue: 12
ISSN: 1073-449X
Publisher: American Thoracic Society  
Date Published: 2020-12-15
Start Page: 1636
End Page: 1645
Language: English
ACCESSION: WOS:000600068500011
DOI: 10.1164/rccm.201911-2199OC
PROVIDER: wos
PUBMED: 32726565
Notes: Article -- Source: Wos
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Dana Pe'er
    110 Pe'er