Abstract: |
We aimed to assess longitudinal changes in quantitative imaging metric values obtained from diffusion-weighted (DW-) and dynamic contrast-enhanced magnetic resonance imaging (DCE)-MRI at pre-treatment (TX[0]), immediately after the first fraction of stereotactic body radiotherapy (D1-TX[1]), and 6 weeks post-TX (Post-TX[2]) in patients with pancreatic ductal adenocarcinoma. Ten enrolled patients (n = 10) underwent DW- and DCE-MRI examinations on a 3.0 T scanner. The apparent diffusion coefficient, ADC (mm2/s), was derived from DW imaging data using a monoexponential model. The tissue relaxation rate, R1t, time-course data were fitted with a shutter-speed model, which provides estimates of the volume transfer constant, Ktrans (min-1), extravascular extracellular volume fraction, ve , and mean lifetime of intracellular water protons, τ i (seconds). Wilcoxon rank-sum test compared the mean values, standard deviation, skewness, kurtosis, and relative percentage (r, %) changes (Δ) in ADC, Ktrans, ve , and τ i values between the magnetic resonance examinations. rADCΔ2-0 values were significantly greater than rADCΔ1-0 values (P = .009). rKtransΔ2-0 values were significantly lower than rKtransΔ1-0 values (P = .048). rveΔ2-1 and rveΔ2-0 values were significantly different (P = .016). rτ iΔ2-1 values were significantly lower than rτ iΔ2-0 values (P = .008). For group comparison, the pre-TX mean and kurtosis of ADC (P = .18 and P = .14), skewness and kurtosis of Ktrans values (P = .14 for both) showed a leaning toward significant difference between patients who experienced local control (n = 2) and failed early (n = 4). DW- and DCE-MRI-derived quantitative metrics could be useful biomarkers to evaluate longitudinal changes to stereotactic body radiotherapy in patients with pancreatic ductal adenocarcinoma. © 2020 The Authors. Published by Grapho Publications, LLC. |