Relationship of changes in pH and energy status to hypoxic cell fraction and hyperthermia sensitivity Journal Article


Authors: Koutcher, J. A.; Barnett, D.; Kornblith, A. B.; Cowburn, D.; Brady, T. J.; Gerweck, L. E.
Article Title: Relationship of changes in pH and energy status to hypoxic cell fraction and hyperthermia sensitivity
Abstract: The relative concentrations of nucleotide triphosphates, creatine phosphate, inorganic phosphate, and pH have been evaluated as a function of tumor volume in a murine fibrosarcoma (FSaII) by 31P NMR spectroscopy. As the tumor volume increased from 60-1250 mm3, the ratio of phosphocreatine to inorganic phosphate systemically decreased. This decrease paralleled a decrease in the ratio of nucleotide triphosphate to inorganic phosphate in thesame tumor volume range. The tumor pH as measured by 31P NMR decreased slightly with tumor growth. A pH of 7.17 ± 0.07 (n = 17) was found for tumors between 60 and 150 mm3, whereas for tumors greater than 900 mm3, a pH of 7.05 ± .03 (n = 6) was noted. Intermediate size tumors (151-900) had a pH of 7.12 ± 0.09 (n = 18). The change in tumor energy status with tumor volume inversely paralleled the change in tumor radiobiologic hypoxic cell fraction and suggested a causal relationship between tumor nutrient status and energy status. Tumor thermal sensitivity also increased with tumor volume, suggesting a relationship between pH, energy status, and thermal sensitivity, as has been demonstrated under in vitro conditions. Each NMR parameter was found to correlate significantly with tumor volume independent of the other NMR parameters. © 1990.
Keywords: nonhuman; mouse; animal; mice; animal experiment; ph; hypoxia; fibrosarcoma; magnetic resonance spectroscopy; cell hypoxia; neoplasm transplantation; adenosine triphosphate; hyperthermia; hyperthermia, induced; energy metabolism; phosphates; nuclear magnetic resonance; tumor hypoxia; hydrogen-ion concentration; mice, inbred c3h; creatine phosphate; phosphocreatine; cancer graft; heat sensitivity; priority journal; article; support, non-u.s. gov't; support, u.s. gov't, p.h.s.; energy status; 31p-nuclear magnetic resonance
Journal Title: International Journal of Radiation Oncology, Biology, Physics
Volume: 18
Issue: 6
ISSN: 0360-3016
Publisher: Elsevier Inc.  
Date Published: 1990-06-01
Start Page: 1429
End Page: 1435
Language: English
DOI: 10.1016/0360-3016(90)90318-e
PUBMED: 2370193
PROVIDER: scopus
DOI/URL:
Notes: Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Jason A Koutcher
    278 Koutcher