Evaluation of [(18)F]-ATRi as PET tracer for in vivo imaging of ATR in mouse models of brain cancer Journal Article


Authors: Carlucci, G.; Carney, B.; Sadique, A.; Vansteene, A.; Tang, J.; Reiner, T.
Article Title: Evaluation of [(18)F]-ATRi as PET tracer for in vivo imaging of ATR in mouse models of brain cancer
Abstract: Rationale Ataxia telangiectasia and Rad3-related (ATR) threonine serine kinase is one of the key elements in orchestrating the DNA damage response (DDR). As such, inhibition of ATR can amplify the effects of chemo- and radiation-therapy, and several ATR inhibitors (ATRi) have already undergone clinical testing in cancer. For more accurate patient selection, monitoring and staging, real-time in vivo imaging of ATR could be invaluable; the development of appropriate imaging agents has remained a major challenge. Methods 3-amino-N-(4-[18F]phenyl)-6-(4-(methylsulfonyl)phenyl)pyrazine-2-carboxamide ([18F]-ATRi), a close analogue of Ve-821, (a clinical ATRi candidate), was readily accomplished similarly to already established synthetic procedures. Structurally, 18F was introduced at the 4-position of the aromatic ring of Ve-821 for generating a labeled ATR inhibitor. In vitro experiments were conducted in U251 MG glioblastoma cell lines and ex vivo biodistribution were performed in subcutaneous U251 MG xenograft bearing athymic nude mice following microPET imaging. Results [18F]-ATRi has a similar pharmacokinetic profile to that of Ve-821. Using an U251 MG glioblastoma mouse model, we evaluated the in vivo binding efficiency of [18F]-ATRi. Blood and tumor showed a statistically significant difference between mice injected with only the probe or following blocking experiment with Ve-821 (1.48 ± 0.40%ID/g vs. 0.46 ± 0.12%ID/g in tumor and 1.85 ± 0.47%ID/g vs. 0.84 ± 0.3%ID/g in blood respectively). Conclusions [18F]-ATRi represents the first 18F positron emission tomography (PET) ATR imaging agent, and is designed on a low nanomolar and clinically relevant ATR inhibitor. © 2017 Elsevier Inc.
Keywords: cell cycle; pet imaging; atr; 18f; u251 mg; ve-821
Journal Title: Nuclear Medicine and Biology
Volume: 48
ISSN: 0969-8051
Publisher: Elsevier Science Inc.  
Date Published: 2017-05-01
Start Page: 9
End Page: 15
Language: English
DOI: 10.1016/j.nucmedbio.2017.01.002
PROVIDER: scopus
PUBMED: 28157626
PMCID: PMC5524211
DOI/URL:
Notes: Article -- Export Date: 2 March 2017 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Thomas Reiner
    136 Reiner
  2. Jun   Tang
    19 Tang
  3. Brandon Daniel Carney
    20 Carney