High precision imaging of microscopic spread of glioblastoma with a targeted ultrasensitive SERRS molecular imaging probe Journal Article


Authors: Huang, R.; Harmsen, S.; Samii, J. M.; Karabeber, H.; Pitter, K. L.; Holland, E. C.; Kircher, M. F.
Article Title: High precision imaging of microscopic spread of glioblastoma with a targeted ultrasensitive SERRS molecular imaging probe
Abstract: The dismal prognosis of patients with malignant brain tumors such as glioblastoma multiforme (GBM) is attributed mostly to their diffuse growth pattern and early microscopic tumor spread to distant regions of the brain. Because the microscopic tumor foci cannot be visualized with current imaging modalities, it remains impossible to direct treatments optimally. Here we explored the ability of integrin-targeted surface-enhanced resonance Raman spectroscopy (SERRS) nanoparticles to depict the true tumor extent in a GBM mouse model that closely mimics the pathology in humans. The recently developed SERRS-nanoparticles have a sensitivity of detection in the femtomolar range. An RGD-peptide-conjugated version for integrin-targeting (RGD-SERRS) was compared directly to its non-targeted RAD-SERRS control in the same mice via Raman multiplexing. Pre-blocking with RGD peptide before injection of RGD-SERRS nanoparticles was used to verify the specificity of integrin-targeting. In contrast to the current belief that the enhanced permeability and retention (EPR) effect results in a baseline uptake of nanoparticles regardless of their surface chemistry, integrin-targeting was shown to be highly specific, with markedly lower accumulation after pre-blocking. While the non-targeted SERRS particles enabled delineation of the main tumor, the RGD-SERRS nanoparticles afforded a major improvement in visualization of the true extent and the diffuse margins of the main tumor. This included the detection of unexpected tumor areas distant to the main tumor, tracks of migrating cells of 2-3 cells in diameter, and even isolated distant tumor cell clusters of less than 5 cells. This Raman spectroscopy-based nanoparticle-imaging technology holds promise to allow high precision visualization of the true extent of malignant brain tumors. © Ivyspring International Publisher.
Keywords: neurosurgery; image-guided surgery; raman spectroscopy; serrs molecular imaging; brain tumor treatment
Journal Title: Theranostics
Volume: 6
Issue: 8
ISSN: 1838-7640
Publisher: Ivyspring International Publisher  
Date Published: 2016-08-01
Start Page: 1075
End Page: 1084
Language: English
DOI: 10.7150/thno.13842
PROVIDER: scopus
PMCID: PMC4893636
PUBMED: 27279902
DOI/URL:
Notes: Article -- Export Date: 3 October 2016 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Ruimin Huang
    30 Huang
  2. Moritz Florian Kircher
    55 Kircher
  3. Ken L Pitter
    53 Pitter
  4. Stefan Harmsen
    17 Harmsen
  5. Jason Mehraban Samii
    4 Samii