Lymph node micrometastases and in-transit metastases from melanoma: In vivo detection with multispectral optoacoustic imaging in a mouse model Journal Article


Authors: Neuschmelting, V.; Lockau, H.; Ntziachristos, V.; Grimm, J.; Kircher, M. F.
Article Title: Lymph node micrometastases and in-transit metastases from melanoma: In vivo detection with multispectral optoacoustic imaging in a mouse model
Abstract: Purpose: To study whether multispectral optoacoustic tomography (MSOT) can serve as a label-free imaging modality for the detection of lymph node micrometastases and in-transit metastases from melanoma on the basis of the intrinsic contrast of melanin in comparison to fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET)/ computed tomography (CT). Materials and Methods: The study was approved by the institutional animal care and use committee. Sequential MSOT was performed in a mouse B16F10 melanoma limb lymph node metastasis model (n = 13) to survey the development of macro-, micro- And in-transit metastases (metastases that are in transit from the primary tumor site to the local nodal basin) in vivo. The in vitro limit of detection was assessed in a B16F10 cell phantom. Signal specificity was determined on the basis of a simultaneous lymphadenitis (n = 4) and 4T1 breast cancer lymph metastasis (n = 2) model. MSOT was compared with intravenous FDG PET/CT. The diagnosis was assessed with histologic examination. Differences in the signal ratio (metastatic node to contralateral limb) between the two modalities were determined with the two-tailed paired t test. Results: The mean signal ratios acquired with MSOT in micrometastases (2.5 ± 0.3, n = 6) and in-transit metastases (8.3 ± 5.8, n = 4) were higher than those obtained with FDG PET/CT (1.1 ± 0.5 [P < .01] and 1.3 ± 0.6 [P > .05], respectively). MSOT was able to help differentiate even small melanoma lymph node metastases from the other lymphadenopathies (P < .05 for both) in vivo, whereas FDG PET/CT could not (P . .1 for both). In vitro, the limit of detection was at an approximate cell density of five cells per microliter (P > .01). Conclusion: MSOT enabled detection of melanoma lymph node micrometastases and in-transit metastases undetectable with FDG PET/CT and helped differentiate melanoma metastasis from other lymphadenopathies. © RSNA, 2016.
Journal Title: Radiology
Volume: 280
Issue: 1
ISSN: 0033-8419
Publisher: Radiological Society of North America, Inc.  
Date Published: 2016-07-01
Start Page: 137
End Page: 150
Language: English
DOI: 10.1148/radiol.2016160191
PROVIDER: scopus
PUBMED: 27144537
PMCID: PMC4942996
DOI/URL:
Notes: Article -- Export Date: 1 July 2016 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Moritz Florian Kircher
    55 Kircher
  2. Jan Grimm
    93 Grimm
  3. Hannah   Lockau
    5 Lockau