Do scatter and random corrections affect the errors in kinetic parameters in dynamic PET? - A Monte Carlo study Conference Paper


Authors: Häggström, I.; Schmidtlein, C. R.; Karlsson, M.; Larsson, A.
Title: Do scatter and random corrections affect the errors in kinetic parameters in dynamic PET? - A Monte Carlo study
Conference Title: 2013 60th IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2013
Abstract: Dynamic positron emission tomography (PET) data can be evaluated by compartmental models, yielding model specific kinetic parameters. For the parameters to be of quantitative use however, understanding and estimation of errors and uncertainties associated with them are crucial. The aim in this study was to investigate the effects of the inclusion of scattered and random counts and their respective corrections on kinetic parameter errors. The MC software GATE was used to simulate two dynamic PET scans of a phantom containing three regions; blood, tissue and a static background. The two sets of time-activity-curves (TACs) used were generated for a 2-tissue compartment model with preset parameter values (K1, k2, k3, k4 and Va). The PET data was reconstructed into 19 frames by both orderedsubset expectation maximization (OSEM) and 3D filtered backprojection with reprojection (3DFBPRP) with normalization and additional corrections (A=attenuation, R=random, S=scatter, C=correction): True counts (AC), true+random counts (ARC), true+scattered counts (ASC) and total counts (ARSC). The results show that parameter estimates from true counts (AC), true+random counts (ARC), true+scattered counts (ASC) and total counts (ARSC) were not significantly different, with the exception of Va where the bias increased with added corrections. Thus, the inclusion of and correction for scattered and random counts did not affect the bias in parameter estimates K1, k2, k3, k4 and Ki. Uncorrected total counts (only AC) resulted in biases of hundreds or even thousands of percent, emphasizing the need for proper corrections. Reconstructions with 3DFBPRP resulted in overall 20-40% less biased estimates compared to OSEM. © 2013 IEEE.
Keywords: pet; gate; monte carlo; dynamic pet; compartment model; flt; scatter correction; random correction
Journal Title IEEE Nuclear Science Symposium Conference Record
Conference Dates: 2013 Oct 27-Nov 2
Conference Location: Seoul, South Korea
ISBN: 1095-7863
Publisher: IEEE  
Location: Seoul
Date Published: 2013-01-01
Language: English
DOI: 10.1109/nssmic.2013.6829388
PROVIDER: scopus
DOI/URL:
Notes: IEEE Nucl. Sci. Symp. Conf. Rec. -- Conference code: 106171 -- Export Date: 1 August 2014 -- CODEN: 85OQA -- and Electronics Engineers (IEEE NPSS); Society of the Institute of Electrical; The Nuclear and Plasma Sciences -- 27 October 2013 through 2 November 2013 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors