Prediction of real-world progression free survival (rwPFS) using a multimodal machine learning (ML) model for patients with HR+HER2-metastatic breast cancer (mBC) undergoing first line (1L) treatment with cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) and endocrine therapy (ET) Meeting Abstract


Authors: Razavi, P.; An, J. A. R.; Erazo, T.; Schwartz, P.; Ferrer, L.; Gallinato, O.; Papillon, L.; Colin, T.; Bossy, M.; Andre, R.; Davies, J.; Falato, C.; Rashid, A.; Sreenivasan, S.; Decque, A.; Remorino, A.; Dellamonica, D.; Menu, P.
Abstract Title: Prediction of real-world progression free survival (rwPFS) using a multimodal machine learning (ML) model for patients with HR+HER2-metastatic breast cancer (mBC) undergoing first line (1L) treatment with cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) and endocrine therapy (ET)
Meeting Title: 2025 ASCO Annual Meeting
Journal Title: Journal of Clinical Oncology
Volume: 43
Issue: 16 Suppl.
Meeting Dates: 2025 May 30-Jun 3
Meeting Location: Chicago, IL
ISSN: 0732-183X
Publisher: American Society of Clinical Oncology  
Date Published: 2025-06-01
Start Page: e13088
Language: English
ACCESSION: WOS:001509262900001
DOI: 10.1200/JCO.2025.43.16_suppl.e13088
PROVIDER: wos
Notes: Source: Wos
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Pedram Razavi
    184 Razavi
  2. Ah Reum An
    7 An