Comprehensive genomic analysis reveals molecular heterogeneity in pediatric ALK-positive anaplastic large cell lymphoma Journal Article


Authors: Shaw, T. I.; Pounds, S.; Cao, X.; Ma, J.; Palacios, G.; Mason, J.; Perkins, S.; Wu, G.; Fan, Y.; Wang, J.; Zhou, X.; Obermayer, A.; Kinney, M. C.; Kraveka, J.; Gross, T.; Sandlund, J.; Zhang, J.; Mullighan, C.; Lim, M. S.; Leventaki, V.
Article Title: Comprehensive genomic analysis reveals molecular heterogeneity in pediatric ALK-positive anaplastic large cell lymphoma
Abstract: Anaplastic large cell lymphoma (ALCL) is a mature T-cell lymphoma that accounts for 10-15% of childhood lymphomas. Despite the observation that more than 90% of pediatric cases harbor the anaplastic lymphoma kinase (ALK) rearrangement resulting in aberrant ALK kinase expression, there is significant clinical, morphologic, and biological heterogeneity. To gain insights into the genomic aberrations and molecular heterogeneity within ALK-positive ALCL (ALK+ ALCL), we analyzed 46 pediatric ALK+ ALCLs by whole-exome sequencing, RNA sequencing, and DNA methylation profiling. Whole-exome sequencing found on average 25 SNV/Indel events per sample with recurring genetic events in regulators of DNA damage (TP53, MDM4), transcription (JUNB), and epigenetic regulators (TET1, KMT2B, KMT2A, KMT2C, KMT2E). Gene expression and methylation profiling consistently subclassified ALK+ ALCLs into two groups characterized by differential ALK expression levels. The ALK-low group showed enrichment of pathways associated with immune response, cytokine signaling, and a hypermethylated predominant pattern compared to the ALK-high group, which had more frequent copy number changes and was enriched with pathways associated with cell growth, proliferation, and metabolism. Altogether, these findings suggest that there is molecular heterogeneity within pediatric ALK+ ALCL, predicting distinct biological mechanisms that may provide novel insights into disease pathogenesis and represent prognostic markers.
Keywords: chemotherapy; protein; p53; fusion; trial; gene-expression; tumor-suppressor; npm-alk; adolescents; childrens-cancer
Journal Title: Leukemia
Volume: 39
Issue: 1
ISSN: 0887-6924
Publisher: Nature Publishing Group  
Date Published: 2025-01-01
Start Page: 199
End Page: 210
Language: English
ACCESSION: WOS:001363215000001
DOI: 10.1038/s41375-024-02468-4
PROVIDER: wos
PUBMED: 39592809
Notes: Article -- Source: Wos
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Megan So-Young Lim
    28 Lim