Cardiopulmonary substructure doses are not correlated with cardiorespiratory fitness among breast cancer survivors treated with contemporary radiation therapy Journal Article


Authors: Thor, M.; Scott, J. M.; Reiner, A. S.; Hong, L.; Yu, A. F.; Apte, A.; McCormick, B.; Perez-Andujar, A.; Lee, C. P.; Cervino, L.; Harrison, J.; Liang, X.; Patel, P.; Dauer, L. T.; Moskowitz, C. S.; Bernstein, J. L.
Article Title: Cardiopulmonary substructure doses are not correlated with cardiorespiratory fitness among breast cancer survivors treated with contemporary radiation therapy
Abstract: Purpose: Breast cancer radiation therapy (RT) techniques have historically delivered mean heart doses (MHDs) in the range of 5 Gy, which have been found to predispose patients to cardiopulmonary toxicities. The purpose of this study was to apply artificial intelligence (AI) cardiac substructure auto-segmentation to evaluate the corresponding substructure doses, whether there are laterality- and technique-specific differences in these doses, and if the doses are significantly associated with cardiorespiratory fitness after state-of-the-art RT planning and delivery for breast cancer. Methods and Materials: Cardiopulmonary substructures were AI auto-segmented. Cardiorespiratory fitness was evaluated at a median of 2.3 (range, 1.1-9.8) years following RT from 2007 to 2021 among 65 breast cancer survivors. The associations between the mean dose to each of the 9 AI auto-segmented cardiopulmonary substructures, the contralateral, and the ipsilateral lung with cardiorespiratory fitness were evaluated using linear regression. Results: The median MHD was 0.64 Gy (range, 0.12-7.1). Among the auto-segmented substructures, the highest mean doses were observed for the left ventricle (median, 0.88 Gy). The mean dose to each of the 11 structures was significantly higher for women treated with volumetric modulated arc therapy (MHD median, 3.8 Gy vs 0.57 Gy; P < .0001). Women with left-sided breast cancer had significantly higher MHDs (0.97 vs 0.38 Gy; P < .0001) due to higher doses in 3 of 4 cardiac chambers and also due to significantly higher pulmonary artery doses (median, 0.93 vs 0.32 Gy; P = .0003); women with right-sided breast cancer had significantly higher vena cava and right atrium doses (eg, right atrium median, 0.74 vs 0.29 Gy; P = .0002). No cardiopulmonary structure dose was significantly associated with reduced cardiorespiratory fitness after adjusting for age, chemotherapy agent, volumetric modulated arc therapy, RT position, and RT extent. Conclusions: State-of-the-art breast cancer RT reduces cardiopulmonary dose, and there is a technique and cancer laterality RT dose dependence throughout the cardiopulmonary system. © 2024 The Authors
Keywords: adult; controlled study; aged; major clinical study; cancer radiotherapy; cancer staging; computer assisted tomography; breast cancer; cohort analysis; cancer survivor; artificial intelligence; anthracycline; cardiopulmonary exercise test; pulmonary artery; linear regression analysis; volumetric modulated arc therapy; conformal radiotherapy; lung volume; electrocardiography monitoring; cava vein; cardiorespiratory fitness; human; female; article; breast radiotherapy; segmentation algorithm
Journal Title: Advances in Radiation Oncology
Volume: 9
Issue: 12
ISSN: 2452-1094
Publisher: Elsevier Inc.  
Date Published: 2024-12-01
Start Page: 101613
Language: English
DOI: 10.1016/j.adro.2024.101613
PROVIDER: scopus
PMCID: PMC11704881
PUBMED: 39777365
DOI/URL:
Notes: Article -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Anne S Reiner
    248 Reiner
  2. Linda Xueqi Hong
    88 Hong
  3. Chaya S. Moskowitz
    278 Moskowitz
  4. Jonine L Bernstein
    142 Bernstein
  5. Lawrence Dauer
    170 Dauer
  6. Beryl McCormick
    371 McCormick
  7. Xiaolin Liang
    62 Liang
  8. Aditya Apte
    203 Apte
  9. Anthony Yu
    90 Yu
  10. Maria Elisabeth Thor
    148 Thor
  11. Prusha   Patel
    16 Patel
  12. Jessica M Scott
    69 Scott
  13. Catherine Lee
    10 Lee