A machine learning model that incorporates CD45 mean fluorescence intensity (MFI) and cell composition predicts poor viability of hematopoietic progenitor cells after freeze-thaw Meeting Abstract


Authors: Al-Riyami, A. Z.; Kadauke, S.; Hanna, R. S.; Azar, A. P.; Maryamchik, E.; Zheng, X.; Zhang, X.; Finn, C.; Giacobbe, N.; Rieser, R.; Tahrir, F. G.; Machietto, R.; Choudhari, S.; Wang, Y.
Abstract Title: A machine learning model that incorporates CD45 mean fluorescence intensity (MFI) and cell composition predicts poor viability of hematopoietic progenitor cells after freeze-thaw
Meeting Title: 28th Annual Scientific Meeting of the International Society for Cell and Gene Therapy (ISCT)
Keywords: hematopoietic progenitor cells; viability; machine learning model
Journal Title: Cytotherapy
Volume: 24
Issue: 5 Suppl.
Meeting Dates: 2022 May 4-7
Meeting Location: San Francisco, CA
ISSN: 1465-3249
Publisher: Elsevier Science Ltd.  
Date Published: 2022-05-01
Start Page: S99
End Page: S100
Language: English
ACCESSION: WOS:000796192800165
PROVIDER: wos
DOI: 10.1016/S1465-3249(22)00284-5
Notes: Meeting Abstract: 403 -- In section: "Poster abstracts: Hematopoietic Stem/Progenitor Cells and Engineering -- Source: Wos
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors