CT-based radiogenomic analysis of clinical stage I lung adenocarcinoma with histopathologic features and oncologic outcomes Journal Article


Authors: Perez-Johnston, R.; Araujo-Filho, J. A.; Connolly, J. G.; Caso, R.; Whiting, K.; Tan, K. S.; Zhou, J.; Gibbs, P.; Rekhtman, N.; Ginsberg, M. S.; Jones, D. R.
Article Title: CT-based radiogenomic analysis of clinical stage I lung adenocarcinoma with histopathologic features and oncologic outcomes
Abstract: Background A preoperative predictive model is needed that can be used to identify patients with lung adenocarcinoma (LUAD) who have a higher risk of recurrence or metastasis. Purpose To investigate associations between CT-based radiomic consensus clustering of stage I LUAD and clinical-pathologic features, genomic data, and patient outcomes. Materials and Methods Patients who underwent complete surgical resection for LUAD from April 2014 to December 2017 with preoperative CT and next-generation sequencing data were retrospectively identified. Comprehensive radiomic analysis was performed on preoperative CT images; tumors were classified as solid, ground glass, or mixed. Patients were clustered into groups based on their radiomics features using consensus clustering, and clusters were compared with tumor genomic alterations, histopathologic features, and recurrence-specific survival (Kruskal-Wallis test for continuous data, χ2 or Fisher exact test for categorical data, and log-rank test for recurrence-specific survival). Cluster analysis was performed on the entire cohort and on the solid, ground-glass, and mixed lesion subgroups. Results In total, 219 patients were included in the study (median age, 68 years; interquartile range, 63-74 years; 150 [68%] women). Four radiomic clusters were identified. Cluster 1 was associated with lepidic, acinar, and papillary subtypes (76 of 90 [84%]); clusters 2 (13 of 50 [26%]) and 4 (13 of 45 [29%]) were associated with solid and micropapillary subtypes (P < .001). The EGFR alterations were highest in cluster 1 (38 of 90 [42%], P = .004). Clusters 2, 3, and 4 were associated with lymphovascular invasion (19 of 50 [38%], 14 of 34 [41%], and 28 of 45 [62%], respectively; P < .001) and tumor spread through air spaces (32 of 50 [64%], 21 of 34 [62%], and 31 of 45 [69%], respectively; P < .001). STK11 alterations (14 of 45 [31%]; P = .006), phosphoinositide 3-kinase pathway alterations (22 of 45 [49%], P < .001), and risk of recurrence (log-rank P < .001) were highest in cluster 4. Conclusion CT-based radiomic consensus clustering enabled identification of associations between radiomic features and clinicalpathologic and genomic features and outcomes in patients with clinical stage I lung adenocarcinoma. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Nishino in this issue.
Keywords: aged; retrospective studies; genetics; lung neoplasms; tomography, x-ray computed; pathology; diagnostic imaging; retrospective study; phosphatidylinositol 3 kinase; lung tumor; lung adenocarcinoma; adenocarcinoma of lung; phosphatidylinositol 3-kinases; procedures; humans; human; male; female; x-ray computed tomography
Journal Title: Radiology
Volume: 303
Issue: 3
ISSN: 0033-8419
Publisher: Radiological Society of North America, Inc.  
Date Published: 2022-06-01
Start Page: 664
End Page: 672
Language: English
DOI: 10.1148/radiol.211582
PUBMED: 35230187
PROVIDER: scopus
PMCID: PMC9131171
DOI/URL:
Notes: Article -- Export Date: 1 July 2022 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Natasha Rekhtman
    423 Rekhtman
  2. Michelle S Ginsberg
    233 Ginsberg
  3. David Randolph Jones
    413 Jones
  4. Kay See   Tan
    239 Tan
  5. Raul Caso Jr
    24 Caso Jr
  6. Jian Zhou
    6 Zhou
  7. Peter Gibbs
    33 Gibbs
  8. Karissa A. Whiting
    47 Whiting