A genomic-pathologic annotated risk model to predict recurrence in early-stage lung adenocarcinoma Journal Article


Authors: Jones, G. D.; Brandt, W. S.; Shen, R.; Sanchez-Vega, F.; Tan, K. S.; Martin, A.; Zhou, J.; Berger, M.; Solit, D. B.; Schultz, N.; Rizvi, H.; Liu, Y.; Adamski, A.; Chaft, J. E.; Riely, G. J.; Rocco, G.; Bott, M. J.; Molena, D.; Ladanyi, M.; Travis, W. D.; Rekhtman, N.; Park, B. J.; Adusumilli, P. S.; Lyden, D.; Imielinski, M.; Mayo, M. W.; Li, B. T.; Jones, D. R.
Article Title: A genomic-pathologic annotated risk model to predict recurrence in early-stage lung adenocarcinoma
Abstract: Importance: Recommendations for adjuvant therapy after surgical resection of lung adenocarcinoma (LUAD) are based solely on TNM classification but are agnostic to genomic and high-risk clinicopathologic factors. Creation of a prediction model that integrates tumor genomic and clinicopathologic factors may better identify patients at risk for recurrence. Objective: To identify tumor genomic factors independently associated with recurrence, even in the presence of aggressive, high-risk clinicopathologic variables, in patients with completely resected stages I to III LUAD, and to develop a computational machine-learning prediction model (PRecur) to determine whether the integration of genomic and clinicopathologic features could better predict risk of recurrence, compared with the TNM system. Design, Setting, and Participants: This prospective cohort study included 426 patients treated from January 1, 2008, to December 31, 2017, at a single large cancer center and selected in consecutive samples. Eligibility criteria included complete surgical resection of stages I to III LUAD, broad-panel next-generation sequencing data with matched clinicopathologic data, and no neoadjuvant therapy. External validation of the PRecur prediction model was performed using The Cancer Genome Atlas (TCGA). Data were analyzed from 2014 to 2018. Main Outcomes and Measures: The study end point consisted of relapse-free survival (RFS), estimated using the Kaplan-Meier approach. Associations among clinicopathologic factors, genomic alterations, and RFS were established using Cox proportional hazards regression. The PRecur prediction model integrated genomic and clinicopathologic factors using gradient-boosting survival regression for risk group generation and prediction of RFS. A concordance probability estimate (CPE) was used to assess the predictive ability of the PRecur model. Results: Of the 426 patients included in the analysis (286 women [67%]; median age at surgery, 69 [interquartile range, 62-75] years), 318 (75%) had stage I cancer. Association analysis showed that alterations in SMARCA4 (clinicopathologic-adjusted hazard ratio [HR], 2.44; 95% CI, 1.03-5.77; P =.042) and TP53 (clinicopathologic-adjusted HR, 1.73; 95% CI, 1.09-2.73; P =.02) and the fraction of genome altered (clinicopathologic-adjusted HR, 1.03; 95% CI, 1.10-1.04; P =.005) were independently associated with RFS. The PRecur prediction model outperformed the TNM-based model (CPE, 0.73 vs 0.61; difference, 0.12 [95% CI, 0.05-0.19]; P <.001) for prediction of RFS. To validate the prediction model, PRecur was applied to the TCGA LUAD data set (n = 360), and a clear separation of risk groups was noted (log-rank statistic, 7.5; P =.02), confirming external validation. Conclusions and Relevance: The findings suggest that integration of tumor genomics and clinicopathologic features improves risk stratification and prediction of recurrence after surgical resection of early-stage LUAD. Improved identification of patients at risk for recurrence could enrich and enhance accrual to adjuvant therapy clinical trials. © 2021 American Medical Association. All rights reserved.
Keywords: adult; cancer survival; controlled study; aged; unclassified drug; major clinical study; cancer recurrence; cancer staging; prospective study; cohort analysis; protein p53; prediction; rna binding protein; lung adenocarcinoma; early cancer; genomics; observational study; recurrence free survival; brg1 protein; high throughput sequencing; lymph vessel metastasis; never smoker; human; male; female; priority journal; article; mutational load; current smoker; ex-smoker; rbm10 protein
Journal Title: JAMA Surgery
Volume: 156
Issue: 2
ISSN: 2168-6254
Publisher: American Medical Association  
Date Published: 2021-02-01
Start Page: e20560
Language: English
DOI: 10.1001/jamasurg.2020.5601
PUBMED: 33355651
PROVIDER: scopus
PMCID: PMC7758824
DOI/URL:
Notes: Article -- Export Date: 1 April 2021 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Natasha Rekhtman
    424 Rekhtman
  2. David Solit
    778 Solit
  3. Ronglai Shen
    204 Shen
  4. Marc Ladanyi
    1326 Ladanyi
  5. Jamie Erin Chaft
    289 Chaft
  6. William D Travis
    742 Travis
  7. Gregory J Riely
    599 Riely
  8. Bernard J Park
    263 Park
  9. Matthew Bott
    135 Bott
  10. Michael Forman Berger
    764 Berger
  11. Nikolaus D Schultz
    486 Schultz
  12. David Randolph Jones
    417 Jones
  13. Yuan Liu
    22 Liu
  14. Daniela   Molena
    271 Molena
  15. Kay See   Tan
    241 Tan
  16. Bob Tingkan Li
    278 Li
  17. Hira Abbas Rizvi
    122 Rizvi
  18. Whitney Brandt
    9 Brandt
  19. Gregory Jones
    22 Jones
  20. Gaetano Rocco
    130 Rocco
  21. Jian Zhou
    6 Zhou
  22. Axel Stephen Martin
    19 Martin