Abstract: |
Reporting biomarkers assessed by routine immunohistochemical (IHC) staining of tissue is broadly used in diagnostic pathology laboratories for patient care. So far, however, clinical reporting is predominantly qualitative or semi-quantitative. By creating a multitask deep learning framework, DeepLIIF, we present a single-step solution to stain deconvolution/separation, cell segmentation and quantitative single-cell IHC scoring. Leveraging a unique de novo dataset of co-registered IHC and multiplex immunofluorescence (mpIF) staining of the same slides, we segment and translate low-cost and prevalent IHC slides to more informative, but also more expensive, mpIF images, while simultaneously providing the essential ground truth for the superimposed brightfield IHC channels. A new nuclear-envelope stain, LAP2beta, with high (>95%) cell coverage is also introduced to improve cell delineation/segmentation and protein expression quantification on IHC slides. We show that DeepLIIF trained on clean IHC Ki67 data can generalize to noisy images as well as other nuclear and non-nuclear markers. © 2022, The Author(s), under exclusive licence to Springer Nature Limited. |