Protein neddylation as a therapeutic target in pulmonary and extrapulmonary small cell carcinomas Journal Article


Authors: Norton, J. P.; Augert, A.; Eastwood, E.; Basom, R.; Rudin, C. M.; MacPherson, D.
Article Title: Protein neddylation as a therapeutic target in pulmonary and extrapulmonary small cell carcinomas
Abstract: Small cell lung carcinoma (SCLC) is among the most lethal of all solid tumor malignancies. In an effort to identify novel therapeutic approaches for this recalcitrant cancer type, we applied genome-scale CRISPR/Cas9 inactivation screens to cell lines that we derived from a murine model of SCLC. SCLC cells were particularly sensitive to the deletion of NEDD8 and other neddylation pathway genes. Genetic suppression or pharmacological inhibition of this pathway using MLN4924 caused cell death not only in mouse SCLC cell lines but also in patient-derived xenograft (PDX) models of pulmonary and extrapulmonary small cell carcinoma treated ex vivo or in vivo. A subset of PDX models were exceptionally sensitive to neddylation inhibition. Neddylation inhibition suppressed expression of major regulators of neuroendocrine cell state such as INSM1 and ASCL1, which a subset of SCLC rely upon for cell proliferation and survival. To identify potential mechanisms of resistance to neddylation inhibition, we performed a genome-scale CRISPR/Cas9 suppressor screen. Deletion of components of the COP9 signalosome strongly mitigated the effects of neddylation inhibition in small cell carcinoma, including the ability of MLN4924 to suppress neuroendocrine transcriptional program expression. This work identifies neddylation as a regulator of neuroendocrine cell state and potential therapeutic target for small cell carcinomas. © 2021 Norton et al.
Keywords: neuroendocrine; cancer; small cell lung cancer]
Journal Title: Genes and Development
Volume: 35
Issue: 11-12
ISSN: 0890-9369
Publisher: Cold Spring Harbor Laboratory Press  
Date Published: 2021-06-01
Start Page: 870
End Page: 887
Language: English
DOI: 10.1101/gad.348316.121
PUBMED: 34016692
PROVIDER: scopus
PMCID: PMC8168556
DOI/URL:
Notes: Article -- Export Date: 1 July 2021 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Charles Rudin
    488 Rudin