Role of specialized composition of SWI/SNF complexes in prostate cancer lineage plasticity Journal Article


Authors: Cyrta, J.; Augspach, A.; De Filippo, M. R.; Prandi, D.; Thienger, P.; Benelli, M.; Cooley, V.; Bareja, R.; Wilkes, D.; Chae, S. S.; Cavaliere, P.; Dephoure, N.; Uldry, A. C.; Lagache, S. B.; Roma, L.; Cohen, S.; Jaquet, M.; Brandt, L. P.; Alshalalfa, M.; Puca, L.; Sboner, A.; Feng, F.; Wang, S.; Beltran, H.; Lotan, T.; Spahn, M.; Kruithof-de Julio, M.; Chen, Y.; Ballman, K. V.; Demichelis, F.; Piscuoglio, S.; Rubin, M. A.
Article Title: Role of specialized composition of SWI/SNF complexes in prostate cancer lineage plasticity
Abstract: Advanced prostate cancer initially responds to hormonal treatment, but ultimately becomes resistant and requires more potent therapies. One mechanism of resistance observed in around 10–20% of these patients is lineage plasticity, which manifests in a partial or complete small cell or neuroendocrine prostate cancer (NEPC) phenotype. Here, we investigate the role of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex in NEPC. Using large patient datasets, patient-derived organoids and cancer cell lines, we identify mSWI/SNF subunits that are deregulated in NEPC and demonstrate that SMARCA4 (BRG1) overexpression is associated with aggressive disease. We also show that SWI/SNF complexes interact with different lineage-specific factors in NEPC compared to prostate adenocarcinoma. These data point to a role for mSWI/SNF complexes in therapy-related lineage plasticity, which may also be relevant for other solid tumors. © 2020, The Author(s).
Keywords: mammalia; disease treatment; cell; plasticity; chemical composition; cancer
Journal Title: Nature Communications
Volume: 11
ISSN: 2041-1723
Publisher: Nature Publishing Group  
Date Published: 2020-11-03
Start Page: 5549
Language: English
DOI: 10.1038/s41467-020-19328-1
PUBMED: 33144576
PROVIDER: scopus
PMCID: PMC7642293
DOI/URL:
Notes: Article -- Export Date: 1 December 2020 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Shangqian   Wang
    20 Wang