DNA binding analysis of glucocorticoid receptor specificity mutants Journal Article


Authors: Alroy, I.; Freedman, L. P.
Article Title: DNA binding analysis of glucocorticoid receptor specificity mutants
Abstract: The glucocorticoid receptor (GR) DNA binding domain consists of several conserved amino acids and folds into two zinc finger-like structures. Previous trans-activation experiments indicated that three amino acids residing in this region, Gly, Ser and Val, appear to be critical for target-site discrimination. Based on the solved crystal structure, these residues are at the beginning of an amphipathic α-helix that interacts with the DNA's major groove; of these, only valine, however, contacts DNA. In order to examine their functional role directly, we have substituted these residues for the corresponding amino acids from the estrogen receptor (ER), overexpressed and purified the mutant proteins, and assayed their binding specificity and affinity by gel mobility shifts using glucocorticoid or estrogen response elements (GRE or ERE, respectively) as DNA probes. We find that all three residues are indeed required to fully switch GR's specificity to an ERE. The contacting valine in GR is of primary importance. The corresponding residue in ER, alanine, is less important for specificity, while glutamic acid, four amino acids towards the N-terminus, is most critical for ER discrimination. Finally, we show that the GR DNA binding domain carrying all three ER-specific mutations has a significantly higher affinity for an ERE than the ER DNA binding domain itself. We interpret these results in the context of both the data presented here and the crystal structure of the GR DNA binding domain complexed to a GRE. © 1992 IRL Press at Oxford University Press.
Keywords: nonhuman; mutant protein; binding affinity; protein conformation; protein domain; amino acid substitution; dna; amino acid sequence; molecular sequence data; recombinant fusion proteins; molecular recognition; rat; base sequence; binding site; crystal structure; dna sequence; receptors, estrogen; binding sites; alanine; estrogen receptor; dna binding; site directed mutagenesis; glutamic acid; mutagenesis; electrophoretic mobility; valine; protein dna interaction; glucocorticoid receptor; receptors, glucocorticoid; regulatory sequences, nucleic acid; receptor protein; priority journal; article; dna probe; hormone responsive element
Journal Title: Nucleic Acids Research
Volume: 20
Issue: 5
ISSN: 0305-1048
Publisher: Oxford University Press  
Date Published: 1992-03-11
Start Page: 1045
End Page: 1052
Language: English
DOI: 10.1093/nar/20.5.1045
PUBMED: 1549465
PROVIDER: scopus
PMCID: PMC312089
DOI/URL:
Notes: Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors