Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation Journal Article


Authors: Zhang, H.; Freitas, D.; Kim, H. S.; Fabijanic, K.; Li, Z.; Chen, H.; Mark, M. T.; Molina, H.; Martin, A. B.; Bojmar, L.; Fang, J.; Rampersaud, S.; Hoshino, A.; Matei, I.; Kenific, C. M.; Nakajima, M.; Mutvei, A. P.; Sansone, P.; Buehring, W.; Wang, H.; Jimenez, J. P.; Cohen-Gould, L.; Paknejad, N.; Brendel, M.; Manova-Todorova, K.; Magalhães, A.; Ferreira, J. A.; Osório, H.; Silva, A. M.; Massey, A.; Cubillos-Ruiz, J. R.; Galletti, G.; Giannakakou, P.; Cuervo, A. M.; Blenis, J.; Schwartz, R.; Brady, M. S.; Peinado, H.; Bromberg, J.; Matsui, H.; Reis, C. A.; Lyden, D.
Article Title: Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation
Abstract: The heterogeneity of exosomal populations has hindered our understanding of their biogenesis, molecular composition, biodistribution and functions. By employing asymmetric flow field-flow fractionation (AF4), we identified two exosome subpopulations (large exosome vesicles, Exo-L, 90-120 nm; small exosome vesicles, Exo-S, 60-80 nm) and discovered an abundant population of non-membranous nanoparticles termed 'exomeres' (~35 nm). Exomere proteomic profiling revealed an enrichment in metabolic enzymes and hypoxia, microtubule and coagulation proteins as well as specific pathways, such as glycolysis and mTOR signalling. Exo-S and Exo-L contained proteins involved in endosomal function and secretion pathways, and mitotic spindle and IL-2/STAT5 signalling pathways, respectively. Exo-S, Exo-L and exomeres each had unique N-glycosylation, protein, lipid, DNA and RNA profiles and biophysical properties. These three nanoparticle subsets demonstrated diverse organ biodistribution patterns, suggesting distinct biological functions. This study demonstrates that AF4 can serve as an improved analytical tool for isolating extracellular vesicles and addressing the complexities of heterogeneous nanoparticle subpopulations. © 2018 The Author(s).
Keywords: signal transduction; controlled study; human tissue; human cell; proteomics; cell subpopulation; mitosis spindle; nanoparticle; cell hypoxia; mtor signaling; glycolysis; cell organelle; molecular model; endosome; biophysics; lipid composition; exosome; protein glycosylation; microtubule protein; nanoanalysis; human; priority journal; article; cell enzyme; exomere; field flow fractionation; il2 stat5 signalling
Journal Title: Nature Cell Biology
Volume: 20
Issue: 3
ISSN: 1465-7392
Publisher: Nature Publishing Group  
Date Published: 2018-03-01
Start Page: 332
End Page: 343
Language: English
DOI: 10.1038/s41556-018-0040-4
PROVIDER: scopus
PUBMED: 29459780
PMCID: PMC5931706
DOI/URL:
Notes: Article -- Export Date: 2 April 2018 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. David C Lyden
    87 Lyden
  2. Jacqueline Bromberg
    141 Bromberg
  3. Mary Sue Brady
    203 Brady
  4. Matthew Bryan Brendel
    10 Brendel