Data-driven optimal binning for respiratory motion management in PET Journal Article


Authors: Kesner, A. L.; Meier, J. G.; Burckhardt, D. D.; Schwartz, J.; Lynch, D. A.
Article Title: Data-driven optimal binning for respiratory motion management in PET
Abstract: Purpose: Respiratory gating has been used in PET imaging to reduce the amount of image blurring caused by patient motion. Optimal binning is an approach for using the motion-characterized data by binning it into a single, easy to understand/use, optimal bin. To date, optimal binning protocols have utilized externally driven motion characterization strategies that have been tuned with population-derived assumptions and parameters. In this work, we are proposing a new strategy with which to characterize motion directly from a patient's gated scan, and use that signal to create a patient/instance-specific optimal bin image. Methods: Two hundred and nineteen phase-gated FDG PET scans, acquired using data-driven gating as described previously, were used as the input for this study. For each scan, a phase-amplitude motion characterization was generated and normalized using principle component analysis. A patient-specific "optimal bin" window was derived using this characterization, via methods that mirror traditional optimal window binning strategies. The resulting optimal bin images were validated by correlating quantitative and qualitative measurements in the population of PET scans. Results: In 53% (n = 115) of the image population, the optimal bin was determined to include 100% of the image statistics. In the remaining images, the optimal binning windows averaged 60% of the statistics and ranged between 20% and 90%. Tuning the algorithm, through a single acceptance window parameter, allowed for adjustments of the algorithm's performance in the population toward conservation of motion or reduced noise - enabling users to incorporate their definition of optimal. In the population of images that were deemed appropriate for segregation, average lesion SUV max were 7.9, 8.5, and 9.0 for nongated images, optimal bin, and gated images, respectively. The Pearson correlation of FWHM measurements between optimal bin images and gated images were better than with nongated images, 0.89 and 0.85, respectively. Generally, optimal bin images had better resolution than the nongated images and better noise characteristics than the gated images. Discussion: We extended the concept of optimal binning to a data-driven form, updating a traditionally one-size-fits-all approach to a conformal one that supports adaptive imaging. This automated strategy was implemented easily within a large population and encapsulated motion information in an easy to use 3D image. Its simplicity and practicality may make this, or similar approaches ideal for use in clinical settings. © 2017 American Association of Physicists in Medicine.
Keywords: adult; major clinical study; positron emission tomography; statistics; motion; noise; human; male; female; gated pet; adaptive imaging; automatic binning; data driven; optimal binning; personalized imaging
Journal Title: Medical Physics
Volume: 45
Issue: 1
ISSN: 0094-2405
Publisher: American Association of Physicists in Medicine  
Date Published: 2018-01-01
Start Page: 277
End Page: 286
Language: English
DOI: 10.1002/mp.12651
PROVIDER: scopus
PUBMED: 29095485
DOI/URL:
Notes: Article -- Export Date: 6 February 2018 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Adam Leon Kesner
    68 Kesner