Prediction of potent shRNAs with a sequential classification algorithm Journal Article


Authors: Pelossof, R.; Fairchild, L.; Huang, C. H.; Widmer, C.; Sreedharan, V. T.; Sinha, N.; Lai, D. Y.; Guan, Y.; Premsrirut, P. K.; Tschaharganeh, D. F.; Hoffmann, T.; Thapar, V.; Xiang, Q.; Garippa, R. J.; Rätsch, G.; Zuber, J.; Lowe, S. W.; Leslie, C. S.; Fellmann, C.
Article Title: Prediction of potent shRNAs with a sequential classification algorithm
Abstract: We present SplashRNA, a sequential classifier to predict potent microRNA-based short hairpin RNAs (shRNAs). Trained on published and novel data sets, SplashRNA outperforms previous algorithms and reliably predicts the most efficient shRNAs for a given gene. Combined with an optimized miR-E backbone, >90% of high-scoring SplashRNA predictions trigger >85% protein knockdown when expressed from a single genomic integration. SplashRNA can significantly improve the accuracy of loss-of-function genetics studies and facilitates the generation of compact shRNA libraries. © 2017 Nature America, Inc.
Keywords: rna; forecasting; micrornas; short hairpin rna; classification algorithm; genomic integration; sequential classifier
Journal Title: Nature Biotechnology
Volume: 35
Issue: 4
ISSN: 1087-0156
Publisher: Nature Publishing Group  
Date Published: 2017-04-01
Start Page: 350
End Page: 353
Language: English
DOI: 10.1038/nbt.3807
PROVIDER: scopus
PUBMED: 28263295
PMCID: PMC5416823
DOI/URL:
Notes: Article -- Export Date: 2 May 2017 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics