BCAP inhibits proliferation and differentiation of myeloid progenitors in the steady state and during demand situations Journal Article


Authors: Duggan, J. M.; Buechler, M. B.; Olson, R. M.; Hohl, T. M.; Hamerman, J. A.
Article Title: BCAP inhibits proliferation and differentiation of myeloid progenitors in the steady state and during demand situations
Abstract: B-cell adaptor for phosphatidylinositol 3-kinase (BCAP) is a signaling adaptor expressed in mature hematopoietic cells, including monocytes and neutrophils. Here we investigated the role of BCAP in the homeostasis and development of these myeloid lineages. BCAP-/- mice had more bone marrow (BM) monocytes than wild-type (WT) mice, and in mixed WT:BCAP-/- BM chimeras, monocytes and neutrophils skewed toward BCAP-/- origin, showing a competitive advantage for BCAP-/- myeloid cells. BCAP was expressed in BM hematopoietic progenitors, including lineage-Sca-1+c-kit+ (LSK), common myeloid progenitor, and granulocyte/macrophage progenitor (GMP) cells. At the steady state, BCAP-/- GMPcells expressed more IRF8 and less C/EBPα than did WT GMP cells, which correlated with an increase in monocyte progenitors and a decrease in granulocyte progenitors among GMP cells. Strikingly, BCAP-/- progenitors proliferated and produced more myeloid cells of both neutrophil and monocyte/macrophage lineages than did WT progenitors in myeloid colony-forming unit assays, supporting a cell-intrinsic role of BCAP in inhibiting myeloid proliferation and differentiation. Consistent with these findings, during cyclophosphamide-induced myeloablation or specific monocyte depletion, BCAP-/- mice replenished circulating monocytes and neutrophils earlier than WT mice. During myeloid replenishment after cyclophosphamide-induced myeloablation, BCAP-/- mice had increased LSK proliferation and increased numbers of LSK and GMP cells compared with WT mice. Furthermore, BCAP-/- mice accumulated more monocytes and neutrophils in the spleen than did WT mice during Listeria monocytogenes infection. Together, these data identify BCAP as a novel inhibitor of myelopoiesis in the steady state and of emergency myelopoiesis during demand conditions. © 2017 by The American Society of Hematology.
Journal Title: Blood
Volume: 129
Issue: 11
ISSN: 0006-4971
Publisher: American Society of Hematology  
Date Published: 2017-03-16
Start Page: 1503
End Page: 1513
Language: English
DOI: 10.1182/blood-2016-06-719823
PROVIDER: scopus
PMCID: PMC5356451
PUBMED: 28087538
DOI/URL:
Notes: Article -- Export Date: 2 May 2017 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Tobias Martin Hohl
    105 Hohl