An investigation of the physical characteristics of 66Ga as an isotope for PET imaging and quantification Journal Article


Authors: Graham, M. C.; Pentlow, K. S.; Mawlawi, O.; Finn, R. D.; Daghighian, F.; Larson, S. M.
Article Title: An investigation of the physical characteristics of 66Ga as an isotope for PET imaging and quantification
Abstract: Isotopes commonly used for PET imaging and quantification have a straightforward decay scheme involving 'pure' positron (β+) emission, i.e., 95%-100% β+ abundance, with no additional gamma rays. 66Ga (E(max) =4.2 MeV, T( 1/4 ) =9.5 h) is a member of a category of isotopes with a lower abundance of β+'s (57%) and a more complicated spectrum involving combinations of gamma rays that are emitted in cascade. These additional gamma rays tend to cause a higher singles rate, resulting in more random coincidence events. The most abundant positron (51.5%) in the spectrum has one of the highest energies considered for PET imaging. For the purposes of monoclonal antibody dosimetry using 66Ga, it is important to verify the quantification in phantoms prior to initiating human studies. A series of quantitative phantom measurements were performed on the PC4600, a head- optimized BGO based scanner with multiple detector rings. Count rate linearity was verified over concentrations ranging from 4.0 kBq/cc to 37 kBq/cc (0.11-1.0 μCi/cc); resolution averaged 16 mm full width half-maximum in the x and y directions in both the direct and cross planes. Axial resolution was 14 mm. The range of the energetic positrons (up to 4.153 MeV, range 7.6 mm in tissue) was verified as a primary source of resolution degradation. Within the limits outlined above, 66Ga is a suitable isotope for use as 66Ga citrate or with monoclonal antibodies in the detection and staging of tumors and other lesions. In addition, the energetic positrons have possible therapeutic applications when used as a monoclonal antibody label.
Keywords: positron emission tomography; image analysis; radiation dosage; monoclonal antibody; dosimetry; temperature; radioisotope; phantom; phantoms, imaging; radioisotope decay; positron emission tomography (pet); tomography, emission-computed; radiobiology; biophysics; positron; beta rays; antibody labeling; gallium; gamma rays; technology, radiologic; gallium radioisotopes; priority journal; article; pet quantification; 66ga; gallium-66; monoclonal antibody dosimetry
Journal Title: Medical Physics
Volume: 24
Issue: 2
ISSN: 0094-2405
Publisher: American Association of Physicists in Medicine  
Date Published: 1997-02-01
Start Page: 317
End Page: 326
Language: English
DOI: 10.1118/1.597924
PUBMED: 9048374
PROVIDER: scopus
DOI/URL:
Notes: Article -- Export Date: 17 March 2017 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Ronald D Finn
    279 Finn
  2. Steven M Larson
    958 Larson
  3. Keith S Pentlow
    70 Pentlow
  4. Martin C Graham
    53 Graham
  5. Osama R Mawlawi
    12 Mawlawi