Abstract: |
Smad4/DPC4 is a tumor suppressor gene frequently mutated or deleted in pancreatic and metastatic colon cancers. Smad4 acts as a cofactor that binds transforming growth factor-β (TGF-β) receptor-activated Smad2 and Smad3 generating transcriptional complexes. Using SW480.7 colon carcinoma cells, defective in Smad4 function, we have investigated whether this loss plays a role in the resistance of colon cancer cells to the antiproliferative effects of TGF-β. SW480.7 cells contain only one Smad4 allele, which we found encodes a wild type protein that is not expressed. We generated SW480.7 cells conditionally expressing Smad4 via an ecdysone-inducible system. Smad4 expression in these cells failed to rescue TGF-β antiproliferative and gene responses (c-myc down-regulation and induction of p21/Cip1 and plasminogen activator inhibitor-1). SW480.7 cells contain an activated Ki-ras oncogene. Hyperactivation of Ras can inhibit Smad nuclear accumulation by their phosphorylation at mitogen-activated protein kinase sites. Co-transfection into SW480.7 cells of Smad4 together with a Ras phosphorylation-resistant Smad3 (but not with wild type Smad2, Smad3, adenomatous polyposis coli (APC), or TGF-β type II receptor) restored the TGF-β antiproliferative response. These results suggest that loss of Smad4 function by both deletion and silencing and inhibition of Smad2/3 function by a hyperactive Ras pathway jointly prevent TGF-β antiproliferative responses in SW480.7 colon cancer cells. |