Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three-dimensional optical surface imaging Journal Article


Authors: Li, G.; Ballangrud, A.; Kuo, L. C.; Kang, H.; Kirov, A.; Lovelock, M.; Yamada, Y.; Mechalakos, J.; Amols, H.
Article Title: Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three-dimensional optical surface imaging
Abstract: Purpose: To establish a new clinical procedure in frameless stereotactic radiosurgery (SRS) for patient setup verification at treatment couch angles as well as for head-motion monitoring during treatment using video-based optical surface imaging (OSI).Methods: A video-based three-dimensional (3D) OSI system with three ceiling-mounted camera pods was employed to verify setup at treatment couch angles as well as to monitor head motion during treatment. A noninvasive head immobilization device was utilized, which includes an alpha head mold and a dental mouthpiece with vacuum suction; both were locked to the treatment couch. Cone beam computed tomography (CBCT) was used as the standard for image-guided setup. Orthogonal 2D-kV imaging was applied for setup verification before treatment, between couch rotations, and after treatment at zero couch angle. At various treatment couch angles, OSI setup verification was performed, relative to initial OSI setup verification at zero couch angle after CBCT setup through a coordinate transformation. For motion monitoring, the setup uncertainty was decoupled by taking an on-site surface image as new reference to detect motion-induced misalignment in near real-time (1-2 frames per second). Initial thermal instability baseline of the real-time monitoring was corrected. An anthropomorphous head phantom and a 1D positioning platform were used to assess the OSI accuracy in motion detection in longitudinal and lateral directions. Two hypofractionated (9 Gy × 3 and 6 Gy × 5) frameless stereotactic radiotherapy (SRT) patients as well as two single-fraction (21 and 18 Gy) frameless SRS patients were treated using this frameless procedure. For comparison, 11 conventional frame-based SRS patients were monitored using the OSI to serve as clinical standards. Multiple noncoplanar conformal beams were used for planning both frameless and frame-based SRS with a micromultileaf collimator.Results: The accuracy of the OSI in 1D motion detection was found to be 0.1 mm with uncertainty of ±0.1 mm using the head phantom. The OSI registration against simulation computed tomography (CT) external contour was found to be dependent on the CT skin definition with ∼0.4 mm variation. For frame-based SRS patients, head-motion magnitude was detected to be <1.0 mm (0.3 ± 0.2 mm) and <1.0° (0.2° ± 0.2°) for 98% of treatment time, with exception of one patient with head rotation <1.5° for 98% of the time. For frameless SRT/SRS patients, similar motion magnitudes were observed with an average of 0.3 ± 0.2 mm and 0.2° ± 0.1° in ten treatments. For 98% of the time, the motion magnitude was <1.1 mm and 1.0°. Complex head-motion patterns within 1.0 mm were observed for frameless SRT/SRS patients. The OSI setup verification at treatment couch angles was found to be within 1.0 mm.Conclusions: The OSI system is capable of detecting 0.1 ± 0.1 mm 1D spatial displacement of a phantom in near real time and useful in head-motion monitoring. This new frameless SRS procedure using the mask-less head-fixation system provides immobilization similar to that of conventional frame-based SRS. Head-motion monitoring using near-real-time surface imaging provides adequate accuracy and is necessary for frameless SRS in case of unexpected head motion that exceeds a set tolerance. © 2011 American Association of Physicists in Medicine.
Keywords: image-guided radiotherapy; frameless stereotactic radiosurgery; head immobilization; head-motion monitoring; real-time optical surface imaging
Journal Title: Medical Physics
Volume: 38
Issue: 7
ISSN: 0094-2405
Publisher: American Association of Physicists in Medicine  
Date Published: 2011-07-01
Start Page: 3981
End Page: 3994
Language: English
DOI: 10.1118/1.3596526
PROVIDER: scopus
PUBMED: 21858995
DOI/URL:
Notes: --- - "Export Date: 17 August 2011" - "CODEN: MPHYA" - "Source: Scopus"
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Yoshiya Yamada
    480 Yamada
  2. Li Cheng Kuo
    65 Kuo
  3. Guang Li
    102 Li
  4. Howard I Amols
    157 Amols
  5. Dale M Lovelock
    183 Lovelock
  6. Assen Kirov
    89 Kirov
  7. Hyejoo Kang
    6 Kang