Examining the association between patient-reported symptoms of attention and memory dysfunction with objective cognitive performance: A latent regression Rasch model approach Journal Article


Authors: Li, Y.; Root, J. C.; Atkinson, T. M.; Ahles, T. A.
Article Title: Examining the association between patient-reported symptoms of attention and memory dysfunction with objective cognitive performance: A latent regression Rasch model approach
Abstract: Objective. Patient-reported cognition generally exhibits poor concordance with objectively assessed cognitive performance. In this article, we introduce latent regression Rasch modeling and provide a step-by-step tutorial for applying Rasch methods as an alternative to traditional correlation to better clarify the relationship of self-report and objective cognitive performance. An example analysis using these methods is also included. Method. Introduction to latent regression Rasch modeling is provided together with a tutorial on implementing it using the JAGS programming language for the Bayesian posterior parameter estimates. In an example analysis, data from a longitudinal neurocognitive outcomes study of 132 breast cancer patients and 45 non-cancer matched controls that included self-report and objective performance measures pre- and post-treatment were analyzed using both conventional and latent regression Rasch model approaches. Results. Consistent with previous research, conventional analysis and correlations between neurocognitive decline and self-reported problems were generally near zero. In contrast, application of latent regression Rasch modeling found statistically reliable associations between objective attention and processing speed measures with self-reported Attention and Memory scores. Conclusions. Latent regression Rasch modeling, together with correlation of specific self-reported cognitive domains with neurocognitive measures, helps to clarify the relationship of self-report with objective performance. While the majority of patients attribute their cognitive difficulties to memory decline, the Rash modeling suggests the importance of processing speed and initial learning. To encourage the use of this method, a step-by-step guide and programming language for implementation is provided. Implications of this method in cognitive outcomes research are discussed.
Keywords: quality of life; adjuvant chemotherapy; carcinoma; impact; women; breast-cancer survivors; statistical methods; longitudinal assessment; learning and memory
Journal Title: Archives of Clinical Neuropsychology
Volume: 31
Issue: 4
ISSN: 0887-6177
Publisher: Oxford University Press  
Date Published: 2016-06-01
Start Page: 365
End Page: 377
Language: English
ACCESSION: WOS:000377417200008
DOI: 10.1093/arclin/acw017
PROVIDER: wos
PMCID: PMC4876936
PUBMED: 27193366
Notes: Article -- Source: Wos
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Yuelin Li
    219 Li
  2. Tim A Ahles
    182 Ahles
  3. James Charles Root
    113 Root
  4. Thomas Michael Atkinson
    155 Atkinson