Abstract: |
Purpose: The EGFR tyrosine kinase inhibitors (TKIs), erlotinib and afatinib, have transformed the treatment of advanced EGFRmutant lung adenocarcinoma. However, almost all patients who respond develop acquired resistance on average approximately 1 year after starting therapy. Resistance is commonly due to a secondary mutation in EGFR (EGFRT790M). We previously found that the combination of the EGFR TKI afatinib and the EGFR antibody cetuximab could overcome EGFRT790M-mediated resistance in preclinical models. This combination has shown a 29% response rate in a clinical trial in patients with acquired resistance to first-generation TKIs. An outstanding question is whether this regimen is beneficial when used as first-line therapy. Experimental Design: Using mouse models of EGFR-mutant lung cancer, we tested whether the combination of afatinib plus cetuximab delivered upfront to mice with TKI-na€ve EGFRL858Rinduced lung adenocarcinomas delayed tumor relapse and drugresistance compared with single-agent TKIs. Results: Afatinib plus cetuximab markedly delayed the time to relapse and incidence of drug-resistant tumors, which occurred in only63.6%of themice, in contrast to erlotinibor afatinib treatment where 100% of mice developed resistance. Mechanisms of tumor escapeobserved in afatinib plus cetuximab resistant tumors include the EGFRT790M mutation and Kras mutations. Experiments in cell lines and xenografts confirmed that the afatinib plus cetuximab combination does not suppress the emergence of EGFRT790M. Conclusions: These results highlight the potential of afatinib plus cetuximab as an effective treatment strategy for patients with TKI-na€ve EGFR-mutant lung cancer and indicate that clinical trial development in this area is warranted. © 2015 American Association for Cancer Research. |