CD59 expressed on a tumor cell surface modulates decay-accelerating factor expression and enhances tumor growth in a rat model of human neuroblastoma Journal Article


Authors: Chen, S.; Caragine, T.; Cheung, N. K. V.; Tomlinson, S.
Article Title: CD59 expressed on a tumor cell surface modulates decay-accelerating factor expression and enhances tumor growth in a rat model of human neuroblastoma
Abstract: It has been hypothesized that complement inhibitors expressed on the surface of tumor cells prevent effective immune-mediated clearance. Whereas there are in vitro data to support this hypothesis, the species-selective activity of complement inhibitors has been a hindrance to investigating the role of membrane-bound complement inhibitors in rodent models of human cancer. The CD59-positive LAN-1 human neuroblastoma cell line was significantly more sensitive to lysis by rat complement than by human complement, illustrating the species selectivity of endogenously expressed complement inhibitors. Transfection of LAN-1 cells with rat CD59, an inhibitor of the terminal cytolytic membrane attack complex, effectively protected the cells from lysis by rat complement in vitro. When LAN-1 cells stably expressing rat CD59 were inoculated into immune-deficient rats, the onset of tumor growth and the rate of tumor growth were significantly enhanced compared with those of control-transfected LAN-1 cells. These data show directly that the expression of a complement inhibitor on a tumor cell promotes tumor growth. Flow cytometric analysis revealed that the endogenous expression of decay-accelerating factor (DAF), an inhibitor of complement activation, was up-regulated on the surface of cells after in vivo growth. Of further interest, higher levels of DAF were present on CD59-transfected cells than on control-transfected cells derived from tumors. Increased DAF expression correlated with decreased complement deposition on the tumor cell surface. These results show that expression of complement inhibitors on a tumor cell has functional consequences with regard to complement deposition in vivo and indicate that CD59 can indirectly effect complement activation and C3 deposition in vivo via a link between CD59 and DAF expression.
Keywords: controlled study; human cell; nonhuman; flow cytometry; antigen expression; animals; animal experiment; animal model; tumor cells, cultured; transfection; time factors; carcinogenesis; immunoregulation; cancer inhibition; immune response; regulatory mechanism; neuroblastoma; rat; tumor cell; rats; rats, nude; neoplasm transplantation; up-regulation; tumor growth; dna, complementary; cd59 antigen; immunity, natural; decay accelerating factor; antigens, cd59; complement system proteins; complement activation; humans; human; male; priority journal; article; antigens, cd55
Journal Title: Cancer Research
Volume: 60
Issue: 11
ISSN: 0008-5472
Publisher: American Association for Cancer Research  
Date Published: 2000-06-01
Start Page: 3013
End Page: 3018
Language: English
PUBMED: 10850450
PROVIDER: scopus
DOI/URL:
Notes: Export Date: 18 November 2015 -- Source: Scopus
Citation Impact
MSK Authors
  1. Nai-Kong Cheung
    650 Cheung