Distinct but spatially overlapping intestinal niches for vancomycin-resistant Enterococcus faecium and carbapenem-resistant Klebsiella pneumoniae Journal Article


Authors: Caballero, S.; Carter, R.; Xu, K.; Sušac, B.; Leiner, I. M.; Kim, G. J.; Miller, L.; Ling, L.; Manova, K.; Pamer, E. G.
Article Title: Distinct but spatially overlapping intestinal niches for vancomycin-resistant Enterococcus faecium and carbapenem-resistant Klebsiella pneumoniae
Abstract: Antibiotic resistance among enterococci and γ-proteobacteria is an increasing problem in healthcare settings. Dense colonization of the gut by antibiotic-resistant bacteria facilitates their spread between patients and also leads to bloodstream and other systemic infections. Antibiotic-mediated destruction of the intestinal microbiota and consequent loss of colonization resistance are critical factors leading to persistence and spread of antibiotic-resistant bacteria. The mechanisms underlying microbiota-mediated colonization resistance remain incompletely defined and are likely distinct for different antibiotic-resistant bacterial species. It is unclear whether enterococci or γ-proteobacteria, upon expanding to high density in the gut, confer colonization resistance against competing bacterial species. Herein, we demonstrate that dense intestinal colonization with vancomycin-resistant Enterococcus faecium (VRE) does not reduce in vivo growth of carbapenem-resistant Klebsiella pneumoniae. Reciprocally, K. pneumoniae does not impair intestinal colonization by VRE. In contrast, transplantation of a diverse fecal microbiota eliminates both VRE and K. pneumoniae from the gut. Fluorescence in situ hybridization demonstrates that VRE and K. pneumoniae localize to the same regions in the colon but differ with respect to stimulation and invasion of the colonic mucus layer. While VRE and K. pneumoniae occupy the same three-dimensional space within the gut lumen, their independent growth and persistence in the gut suggests that they reside in distinct niches that satisfy their specific in vivo metabolic needs. © 2015 Caballero et al.
Keywords: controlled study; sequence analysis; nonhuman; mouse; animal tissue; confocal microscopy; animal experiment; transplantation; antibiotic resistance; fluorescence in situ hybridization; immunofluorescence test; bacterial colonization; vancomycin resistant enterococcus; intestine flora; feces analysis; enterococcus faecium; ampicillin; klebsiella pneumoniae; bacterial load; article; fecal microbiota transplantation
Journal Title: PLoS Pathogens
Volume: 11
Issue: 9
ISSN: 1553-7366
Publisher: Public Library of Science  
Date Published: 2015-09-03
Start Page: e1005132
Language: English
DOI: 10.1371/journal.ppat.1005132
PROVIDER: scopus
PMCID: PMC4559429
PUBMED: 26334306
DOI/URL:
Notes: Export Date: 2 November 2015 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Eric Pamer
    283 Pamer
  2. Ingrid Leiner
    49 Leiner
  3. Ke Xu
    11 Xu
  4. Lilan Ling
    44 Ling
  5. Boze Susac
    8 Susac
  6. Rebecca Anne Carter
    13 Carter
  7. Liza Claire Miller
    7 Miller
  8. Grace Jaeyoon Kim
    4 Kim