Direct and indirect targeting of MYC to treat acute myeloid leukemia Journal Article


Authors: Brondfield, S.; Umesh, S.; Corella, A.; Zuber, J.; Rappaport, A. R.; Gaillard, C.; Lowe, S. W.; Goga, A.; Kogan, S. C.
Article Title: Direct and indirect targeting of MYC to treat acute myeloid leukemia
Abstract: Purpose: Acute myeloid leukemia (AML) is the most common acute leukemia in adults and is often resistant to conventional therapies. The MYC oncogene is commonly overexpressed in AML but has remained an elusive target. We aimed to examine the consequences of targeting MYC both directly and indirectly in AML overexpressing MYC/Myc due to trisomy 8/15 (human/mouse), FLT3-ITD mutation, or gene amplification. Methods: We performed in vivo knockdown of Myc (shRNAs) and both in vitro and in vivo experiments using four drugs with indirect anti-MYC activity: VX-680, GDC-0941, artemisinin, and JQ1. Results: shRNA knockdown of Myc in mice prolonged survival, regardless of the mechanism underlying MYC overexpression. VX-680, an aurora kinase inhibitor, demonstrated in vitro efficacy against human MYC-overexpressing AMLs regardless of the mechanism of MYC overexpression, but was weakest against a MYC-amplified cell line. GDC-0941, a PI3-kinase inhibitor, demonstrated efficacy against several MYC-overexpressing AMLs, although only in vitro. Artemisinin, an antimalarial, did not demonstrate consistent efficacy against any of the human AMLs tested. JQ1, a bromodomain and extra-terminal bromodomain inhibitor, demonstrated both in vitro and in vivo efficacy against several MYC-overexpressing AMLs. We also confirmed a decrease in MYC levels at growth inhibitory doses for JQ1, and importantly, sensitivity of AML cell lines to JQ1 appeared independent of the mechanism of MYC overexpression. Conclusions: Our data support growing evidence that JQ1 and related compounds may have clinical efficacy in AML treatment regardless of the genetic abnormalities underlying MYC deregulation. © 2015 The Author(s).
Keywords: myc; aml; myeloid leukemia; brd4; jq1
Journal Title: Cancer Chemotherapy and Pharmacology
Volume: 76
Issue: 1
ISSN: 0344-5704
Publisher: Springer  
Date Published: 2015-07-01
Start Page: 35
End Page: 46
Language: English
DOI: 10.1007/s00280-015-2766-z
PROVIDER: scopus
PMCID: PMC4485702
PUBMED: 25956709
DOI/URL:
Notes: Export Date: 3 August 2015 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Scott W Lowe
    249 Lowe