On the extended log-rank estimating function for the censored regression model Journal Article


Authors: Hummer, A.; Yang, S.
Article Title: On the extended log-rank estimating function for the censored regression model
Abstract: For the censored regression model, Yang (J. Amer. Statist. Assoc. 92 (1997) 977-984) introduced a new class of estimating functions. These estimating functions produce regression estimators that are asymptotically normal with a density-free asymptotic variance that is simple to estimate reliably. In this paper we further study the estimation function of Yang by considering new classes of weights. Through extensive numerical studies, we find weights that enhance the results of the estimating function and improve upon choices previously recommended by Yang. © 2001 Elsevier Science B.V. All rights reserved.
Keywords: survival analysis; regression analysis; estimation; functions; accelerated life regression model; censoring; covariance estimation; weighted log-rank estimating functions; asymptotic stability; censored regression models
Journal Title: Computational Statistics and Data Analysis
Volume: 37
Issue: 2
ISSN: 0167-9473
Publisher: Elsevier B.V.  
Date Published: 2001-08-28
Start Page: 171
End Page: 180
Language: English
DOI: 10.1016/s0167-9473(00)00069-4
PROVIDER: scopus
DOI/URL:
Notes: Export Date: 21 May 2015 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Amanda J Hummer
    60 Hummer