Intercellular communication in malignant pleural mesothelioma: Properties of tunneling nanotubes Journal Article

Authors: Ady, J. W.; Desir, S.; Thayanithy, V.; Vogel, R. I.; Moreira, A. L.; Downey, R. J.; Fong, Y. M.; Manova-Todorova, K.; Moore, M. A. S.; Lou, E.
Article Title: Intercellular communication in malignant pleural mesothelioma: Properties of tunneling nanotubes
Abstract: Malignant pleural mesothelioma is a particularly aggressive and locally invasive malignancy with a poor prognosis despite advances in understanding of cancer cell biology and development of new therapies. At the cellular level, cultured mesothelioma cells present a mesenchymal appearance and a strong capacity for local cellular invasion. One important but underexplored area of mesothelioma cell biology is intercellular communication. Our group has previously characterized in multiple histological subtypes of mesothelioma a unique cellular protrusion known as tunneling nanotubes (TnTs). TnTs are long, actin filament-based, narrow cytoplasmic extensions that are non-adherent when cultured in vitro and are capable of shuttling cellular cargo between connected cells. Our prior work confirmed the presence of nanotube structures in tumors resected from patients with human mesothelioma. In our current study, we quantified the number of TnTs/cell among various mesothelioma subtypes and normal mesothelial cells using confocal microscopic techniques. We also examined changes in TnT length over time in comparison to cell proliferation. We further examined potential approaches to the in vivo study of TnTs in animal models of cancer. We have developed novel approaches to study TnTs in aggressive solid tumor malignancies and define fundamental characteristics of TnTs in malignant mesothelioma. There is mounting evidence that TnTs play an important role in intercellular communication in mesothelioma and thus merit further investigation of their role in vivo.
Keywords: in-vivo; malignant pleural mesothelioma; stem-cells; lung-cancer; epithelial-mesenchymal transition; membrane; smooth-muscle-cells; nanotubes; tumor stroma; transfer; intercellular communication; tunneling nanotubes; intercellular; mitochondrial transfer; hyaluronan synthesis; animal-cells
Journal Title: Frontiers in Physiology
Volume: 5
ISSN: 1664-042X
Publisher: Frontiers Media S.A.  
Date Published: 2014-10-31
Start Page: 400
Language: English
ACCESSION: WOS:000347183900001
DOI: 10.3389/fphys.2014.00400
PMCID: PMC4215694
PUBMED: 25400582
Notes: Article -- 400 -- Source: Wos
Citation Impact
MSK Authors
  1. Andre L Moreira
    176 Moreira
  2. Yuman Fong
    772 Fong
  3. Robert J Downey
    216 Downey
  4. Malcolm A S Moore
    476 Moore
  5. Justin William Ady
    10 Ady