Hematologic toxicity in radioimmunotherapy: Dose-response relationships for I-131 labeled antibody therapy Journal Article


Authors: O'Donoghue, J. A.; Baidoo, N.; Deland, D.; Welt, S.; Divgi, C. R.; Sgouros, G.
Article Title: Hematologic toxicity in radioimmunotherapy: Dose-response relationships for I-131 labeled antibody therapy
Abstract: Bone marrow toxicity is generally dose-limiting for radioimmunotherapy (RIT) with β-emitting radionuclides. Treatment may be prescribed on the basis of administered activity or absorbed dose. An optimal definition of maximum tolerated dose will enable the clinical benefits of RIT to be maximized. Methods We examined data from six clinical studies of RIT with various 131-1 labeled antibodies and antibody fragments that treated a total of J14 patients. We also examined a sub-set of 36 patients with minimal prior chemotherapy who were treated with-labeled intact murine IgG at a single institution. For both these groups the ability of absorbed dose-based methods to predict bone marrow tolerance was compared with that of activity-based methods. Results Marrow toxicity was more accurately predicted by absorbed dose than by activity in the general case where a variety of different antibodies and antibody fragments were used. For the more homogeneous smaller group, well defined "dose-response " relationships were observed for both absorbed dose and administered activity. However, absorbed dose-based definitions of maximally tolerated dose yielded a better stratification of patients than activity-based definitions (including per meter squared) such that fewer patients had major toxicity when treated below "tolerance", and fewer patients had minor toxicity when treated above "tolerance". Conclusions Absorbed dose-based definitions of maximum tolerated dose and escalation variables are optimal for 1311-labeled antibody therapy. The ability of pre-therapy dosimetry studies to predict the behavior of therapeutic administrations must be validated for prospective clinical applications.
Keywords: major clinical study; dose response; validation process; radiation dose; diagnostic accuracy; bone marrow; blood toxicity; thrombocytopenia; dose-response relationship, radiation; radiation dosage; immunoglobulin fragment; immunoglobulin g; iodine 131; isotope labeling; iodine radioisotopes; dosimetry; probability; maximum tolerated dose; toxicity; radioimmunotherapy; antibody; blood platelets; beta radiation; absorbed dose; humans; human; priority journal; article
Journal Title: Cancer Biotherapy and Radiopharmaceuticals
Volume: 17
Issue: 4
ISSN: 1084-9785
Publisher: Mary Ann Liebert, Inc  
Date Published: 2002-08-01
Start Page: 435
End Page: 443
Language: English
PUBMED: 12396707
PROVIDER: scopus
DOI: 10.1089/108497802760363222
DOI/URL:
Notes: Export Date: 14 November 2014 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. George Sgouros
    146 Sgouros
  2. Chaitanya Divgi
    163 Divgi
  3. Sydney   Welt
    98 Welt