Simulating structural and thermodynamic properties of carcinogen-damaged DNA Journal Article


Authors: Yan, S. ; Wu, M.; Patel, D. J.; Geacintov, N. E.; Broyde, S.
Article Title: Simulating structural and thermodynamic properties of carcinogen-damaged DNA
Abstract: A pair of stereoisomeric covalent adducts to guanine in double-stranded DNA, derived from the reaction of mutagenic and tumorigenic metabolites of benzo[a]pyrene (BP), have been well characterized structurally and thermodynamically. Both high-resolution NMR solution structures and an array of thermodynamic data are available for these 10S (+)- and 10R (-)-trans-anti-[BP]-N2-dG adducts in double-stranded deoxyoligonucleotides. The availability of experimentally well-characterized duplexes containing these two stereoisomeric guanine adducts provides an opportunity for evaluating the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method for computing thermodynamic properties from molecular dynamics ensembles. We have carried out 3-ns molecular dynamics simulations, using NMR solution structures as the starting models for the 10S (+)- and 10R (-)-trans-anti-dG adducts in a DNA duplex 11-mer using AMBER 6.0. We employed the MM-PBSA method to compute the free energies, enthalpies, and entropies of the two adducts. Our complete thermodynamic analysis agrees quite well with the full experimental thermodynamic characterization of these adducts, showing essentially equal stabilities of the two adducts. We also calculated the nuclear Overhauser effect (NOE) distances from the molecular dynamics trajectories, and compared them against the experimental NMR-derived NOE distances. Our results showed that the simulated structures are in good agreement with the NMR experimental NOE data. Furthermore, the molecular dynamics simulations provided new structural and biological insights. Specifically, the puzzling observation that the BP aromatic ring system in the 10S (+)-trans-anti-dG adduct is more exposed to the aqueous solvent than the 1 OR (-)-trans-anti-dG adduct, is rationalized in terms of the adduct structures. The structural and thermodynamic features of these stereoisomeric adducts are also discussed in relation to their reported low susceptibilities to nucleotide excision repair.
Keywords: dna damage; molecular dynamics; poisson distribution; simulation; molecular mechanics; dna; double stranded dna; molecular sequence data; guanine; energy transfer; base sequence; benzo[a]pyrene; computer simulation; models, molecular; thermodynamics; binding sites; nucleic acid conformation; protein structure; structure analysis; motion; energy; aqueous solution; nuclear magnetic resonance; models, chemical; stereoisomerism; carcinogen; mathematical analysis; carcinogens; crystallography; benzopyrenes; surface property; nuclear overhauser effect; article
Journal Title: Biophysical Journal
Volume: 84
Issue: 4
ISSN: 0006-3495
Publisher: Cell Press  
Date Published: 2003-04-01
Start Page: 2137
End Page: 2148
Language: English
PUBMED: 12668423
PROVIDER: scopus
PMCID: PMC1302781
DOI: 10.1016/S0006-3495(03)75020-6
DOI/URL:
Notes: Export Date: 12 September 2014 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Dinshaw J Patel
    477 Patel