The effects of intra-fraction organ motion on the delivery of intensity-modulated field with a multileaf collimator Journal Article


Authors: Chui, C. S.; Yorke, E.; Hong, L.
Article Title: The effects of intra-fraction organ motion on the delivery of intensity-modulated field with a multileaf collimator
Abstract: Intensity-modulated radiation therapy can be conveniently delivered with a multileaf collimator. With this method, the entire field is not delivered at once, but rather it is composed of many subfields defined by the leaf positions as a function of beam on time. At any given instant, only these subfields are delivered. During treatment, if the organ moves, part of the volume may move in or out of these subfields. Due to this interplay between organ motion and leaf motion the delivered dose may be different from what was planned. In this work, we present a method that calculates the effects of organ motion on delivered dose. The direction of organ motion may be parallel or perpendicular to the leaf motion, and the effect can be calculated for a single fraction or for multiple fractions. Three breast patients and four lung patients were included in this study, with the amplitude of the organ motion varying from ± 3.5 mm to ± 10 mm, and the period varying from 4 to 8 seconds. Calculations were made for these patients with and without organ motion, and results were examined in terms of isodose distribution and dose volume histograms. Each calculation was repeated ten times in order to estimate the statistical uncertainties. For selected patients, calculations were also made with conventional treatment technique. The effects of organ motion on conventional techniques were compared relative to that on IMRT techniques. For breast treatment, the effect of organ motion primarily broadened the penumbra at the posterior field edge. The dose in the rest of the treatment volume was not significantly affected. For lung treatment, the effect also broadened the penumbra and degraded the coverage of the planning target volume (PTV). However, the coverage of the clinical target volume (CTV) was not much affected, provided the PTV margin was adequate. The same effects were observed for both IMRT and conventional treatment techniques. For the IMRT technique, the standard deviations of ten samples of a 30-fraction calculation were very small for all patients, implying that over a typical treatment course of 30 fractions, the delivered dose was very close to the expected value. Hence, under typical clinical conditions, the effect of organ motion on delivered dose can be calculated without considering the interplay between the organ motion and the leaf motion. It can be calculated as the weighted average of the dose distribution without organ motion with the distribution of organ motion. Since the effects of organ motion on dose were comparable for both IMRT and conventional techniques, the PTV margin should remain the same for both techniques. © 2003 American Association of Physicists in Medicine.
Keywords: clinical article; intensity modulated radiation therapy; radiation dose; sensitivity and specificity; quality control; reproducibility of results; models, biological; lung neoplasms; radiotherapy dosage; radiotherapy; breast neoplasms; algorithms; lung; collimator; radiometry; radiotherapy planning, computer-assisted; radiotherapy, conformal; radiation beam; radiation dose distribution; radiation field; artifacts; intensity-modulated radiation therapy; viscera; respiratory mechanics; calculation; multileaf collimator; radiotherapy, computer-assisted; movement; peru tomato mosaic virus; organ motion; humans; human; priority journal; article
Journal Title: Medical Physics
Volume: 30
Issue: 7
ISSN: 0094-2405
Publisher: American Association of Physicists in Medicine  
Date Published: 2003-07-01
Start Page: 1736
End Page: 1746
Language: English
DOI: 10.1118/1.1578771
PUBMED: 12906191
PROVIDER: scopus
DOI/URL:
Notes: Export Date: 12 September 2014 -- Source: Scopus
Altmetric
Citation Impact
MSK Authors
  1. Linda Xueqi Hong
    84 Hong
  2. Ellen D Yorke
    429 Yorke
  3. Chen Chui
    144 Chui