Nuclear role of WASp in the pathogenesis of dysregulated TH1 immunity in human Wiskott-Aldrich syndrome Journal Article


Authors: Taylor, M. D.; Sadhukhan, S.; Kottangada, P.; Ramgopal, A.; Sarkar, K.; D'Silva, S.; Selvakumar, A.; Candotti, F.; Vyas, Y. M.
Article Title: Nuclear role of WASp in the pathogenesis of dysregulated TH1 immunity in human Wiskott-Aldrich syndrome
Abstract: The clinical symptomatology in the X-linked Wiskott-Aldrich syndrome (WAS), a combined immunodeficiency and autoimmune disease resulting from WAS protein (WASp) deficiency, reflects the underlying coexistence of an impaired T helper 1 (TH1) immunity alongside intact TH2 immunity. This suggests a role for WASp in patterning TH subtype immunity, yet the molecular basis for the TH1-TH2 imbalance in human WAS is unknown. We have discovered a nuclear role for WASp in the transcriptional regulation of the TH1 regulator gene TBX21 at the chromatin level. In primary TH1-differentiating cells, a fraction of WASp is found in the nucleus, where it is recruited to the proximal promoter locus of the TBX21 gene, but not to the core promoter of GATA3 (a TH2 regulator gene) or RORc (a TH17 regulator gene). Genome-wide mapping demonstrates association of WASp in vivo with the gene-regulatory network that orchestrates TH1 cell fate choice in thehuman TH cell genome. Functionally, nuclear WASp associates with H3K4 trimethyltransferase [RBBP5 (retinoblastoma-binding protein 5)] and H3K9/H3K36 tridemethylase [JMJD2A (Jumonji domain-containing protein 2A)] proteins, and their enzymatic activity in vitro and in vivo is required for achieving transcription-permissive chromatin dynamics at the TBX21 proximal promoter in primary differentiating TH1 cells. During TH1 differentiation, the loss of WASp accompanies decreased enrichment of RBBP5 and, in a subset of WAS patients, also of filamentous actin at the TBX21 proximal promoter locus. Accordingly, human WASp-deficient TH cells, from natural mutation or RNA interference-mediated depletion, demonstrate repressed TBX21 promoter dynamics when driven under TH1-differentiating conditions. These chromatin derangements accompany deficient T-BET messenger RNA and protein expression and impaired TH1 function, defects that are ameliorated by reintroducing WASp. Our findings reveal a previously unappreciated role of WASp in the epigenetic control of T-BET transcription and provide a new mechanism for the pathogenesis of WAS by linking aberrant histone methylation at the TBX21 promoter to dysregulated adaptive immunity.
Keywords: controlled study; protein expression; unclassified drug; gene mutation; human cell; promoter region; pathogenesis; protein function; protein localization; actin; stat1 protein; transcription factor gata 3; gene expression; protein protein interaction; genetic association; enzyme activity; gene mapping; transcription regulation; messenger rna; epigenetics; chromatin; gene regulatory network; transcription factor t bet; th1 cell; adaptive immunity; actin polymerization; actin related protein 2-3 complex; genetic regulation; histone demethylase; jumonji domain containing protein 2a; pregnancy specific beta1 glycoprotein; retinoblastoma binding protein; retinoblastoma binding protein 5; retinoid related orphan receptor gamma; wiskott aldrich syndrome protein; histone methylation; regulator gene; wiskott aldrich syndrome
Journal Title: Science Translational Medicine
Volume: 2
Issue: 37
ISSN: 1946-6234
Publisher: American Association for the Advancement of Science  
Date Published: 2010-06-01
Start Page: 37ra44
Language: English
DOI: 10.1126/scitranslmed.3000813
PROVIDER: scopus
PMCID: PMC2943146
PUBMED: 20574068
DOI/URL:
Notes: --- - "Cited By (since 1996): 1" - "Export Date: 20 April 2011" - "Art. No.: 37ra44" - "Source: Scopus"
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors