Systematic evaluation of spliced alignment programs for RNA-seq data Journal Article


Authors: Engström, P. G.; Steijger, T.; Sipos, B.; Grant, G. R.; Kahles, A.; Rätsch, G.; Goldman, N.; Hubbard, T. J.; Harrow, J.; Guigó, R.; Bertone, P.; Alioto, T.; Behr, J.; Bohnert, R.; Campagna, D.; Davis, C. A.; Dobin, A.; Gingeras, T. R.; Jean, G.; Kosarev, P.; Li, S.; Liu, J.; Mason, C. E.; Molodtsov, V.; Ning, Z.; Ponstingl, H.; Prins, J. F.; Ribeca, P.; Seledtsov, I.; Solovyev, V.; Valle, G.; Vitulo, N.; Wang, K.; Wu, T. D.; Zeller, G.
Article Title: Systematic evaluation of spliced alignment programs for RNA-seq data
Abstract: High-throughput RNA sequencing is an increasingly accessible method for studying gene structure and activity on a genome-wide scale. A critical step in RNA-seq data analysis is the alignment of partial transcript reads to a reference genome sequence. To assess the performance of current mapping software, we invited developers of RNA-seq aligners to process four large human and mouse RNA-seq data sets. In total, we compared 26 mapping protocols based on 11 programs and pipelines and found major performance differences between methods on numerous benchmarks, including alignment yield, basewise accuracy, mismatch and gap placement, exon junction discovery and suitability of alignments for transcript reconstruction. We observed concordant results on real and simulated RNA-seq data, confirming the relevance of the metrics employed. Future developments in RNA-seq alignment methods would benefit from improved placement of multimapped reads, balanced utilization of existing gene annotation and a reduced false discovery rate for splice junctions. © 2013 Nature America, Inc.
Journal Title: Nature Methods
Volume: 10
Issue: 12
ISSN: 1548-7091
Publisher: Nature Publishing Group  
Date Published: 2013-12-01
Start Page: 1185
End Page: 1191
Language: English
DOI: 10.1038/nmeth.2722
PROVIDER: scopus
PUBMED: 24185836
PMCID: PMC4018468
DOI/URL:
Notes: Cited By (since 1996):2 -- Export Date: 2 January 2014 -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Gunnar Ratsch
    68 Ratsch
  2. Jonas Tahmoh Behr
    6 Behr
  3. Andre Kahles
    31 Kahles