Microchannel Acoustophoresis does not Impact Survival or Function of Microglia, Leukocytes or Tumor Cells Journal Article


Authors: Burguillos, M. A.; Magnusson, C.; Nordin, M.; Lenshof, A.; Augustsson, P.; Hansson, M. J.; Elmér, E.; Lilja, H.; Brundin, P.; Laurell, T.; Deierborg, T.
Article Title: Microchannel Acoustophoresis does not Impact Survival or Function of Microglia, Leukocytes or Tumor Cells
Abstract: Background:The use of acoustic forces to manipulate particles or cells at the microfluidic scale (i.e. acoustophoresis), enables non-contact, label-free separation based on intrinsic cell properties such as size, density and compressibility. Acoustophoresis holds great promise as a cell separation technique in several research and clinical areas. However, it has been suggested that the force acting upon cells undergoing acoustophoresis may impact cell viability, proliferation or cell function via subtle phenotypic changes. If this were the case, it would suggest that the acoustophoresis method would be a less useful tool for many cell analysis applications as well as for cell therapy.Methods:We investigate, for the first time, several key aspects of cellular changes following acoustophoretic processing. We used two settings of ultrasonic actuation, one that is used for cell sorting (10 Vpp operating voltage) and one that is close to the maximum of what the system can generate (20 Vpp). We used microglial cells and assessed cell viability and proliferation, as well as the inflammatory response that is indicative of more subtle changes in cellular phenotype. Furthermore, we adapted a similar methodology to monitor the response of human prostate cancer cells to acoustophoretic processing. Lastly, we analyzed the respiratory properties of human leukocytes and thrombocytes to explore if acoustophoretic processing has adverse effects.Results:BV2 microglia were unaltered after acoustophoretic processing as measured by apoptosis and cell turnover assays as well as inflammatory cytokine response up to 48 h following acoustophoresis. Similarly, we found that acoustophoretic processing neither affected the cell viability of prostate cancer cells nor altered their prostate-specific antigen secretion following androgen receptor activation. Finally, human thrombocytes and leukocytes displayed unaltered mitochondrial respiratory function and integrity after acoustophoretic processing.Conclusion:We conclude that microchannel acoustophoresis can be used for effective continuous flow-based cell separation without affecting cell viability, proliferation, mitochondrial respiration or inflammatory status. © 2013 Burguillos et al.
Keywords: controlled study; human cell; nonhuman; cell proliferation; prostate specific antigen; animal cell; mouse; phenotype; cell viability; cell survival; cell function; thrombocyte; cell differentiation; enzyme activation; cell population; prostate cancer; cancer cell; microfluidics; androgen receptor; enzyme release; cell separation; acoustics; cell activity; leukocyte; cell selection; acoustophoresis; mitochondrial respiration; microglia
Journal Title: PLoS ONE
Volume: 8
Issue: 5
ISSN: 1932-6203
Publisher: Public Library of Science  
Date Published: 2013-05-27
Start Page: e64233
Language: English
DOI: 10.1371/journal.pone.0064233
PROVIDER: scopus
PMCID: PMC3664584
PUBMED: 23724038
DOI/URL:
Notes: --- - "Export Date: 1 July 2013" - "Source: Scopus"
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Hans Gosta Lilja
    343 Lilja