Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo Journal Article


Authors: Thurber, G. M.; Yang, K. S.; Reiner, T.; Kohler, R. H.; Sorger, P.; Mitchison, T.; Weissleder, R.
Article Title: Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo
Abstract: Pharmacokinetic analysis at the organ level provides insight into how drugs distribute throughout the body, but cannot explain how drugs work at the cellular level. Here we demonstrate in vivo single-cell pharmacokinetic imaging of PARP-1 inhibitors and model drug behaviour under varying conditions. We visualize intracellular kinetics of the PARP-1 inhibitor distribution in real time, showing that PARP-1 inhibitors reach their cellular target compartment, the nucleus, within minutes in vivo both in cancer and normal cells in various cancer models. We also use these data to validate predictive finite element modelling. Our theoretical and experimental data indicate that tumour cells are exposed to sufficiently high PARP-1 inhibitor concentrations in vivo and suggest that drug inefficiency is likely related to proteomic heterogeneity or insensitivity of cancer cells to DNA-repair inhibition. This suggests that single-cell pharmacokinetic imaging and derived modelling improve our understanding of drug action at single-cell resolution in vivo. © 2013 Macmillan Publishers Limited.
Journal Title: Nature Communications
Volume: 4
ISSN: 2041-1723
Publisher: Nature Publishing Group  
Date Published: 2013-01-01
Start Page: 1504
Language: English
DOI: 10.1038/ncomms2506
PROVIDER: scopus
PMCID: PMC3579506
PUBMED: 23422672
DOI/URL:
Notes: --- - "Export Date: 1 April 2013" - "Source: Scopus"
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Thomas Reiner
    136 Reiner