Abstract: |
<p>Several tumor predisposition syndromes have been linked to the development of gliomas and glioneuronal tumors (glioma/GNT). For many pathogenic germline variants, the prevalence and clinical significance remain unclear. Germline variants and copy-number variants affecting 76-90 well-established cancer predisposing genes were identified in 2,187 patients with gliomas/GNT, who underwent prospective sequencing of their tumor and a matched normal sample. A germline pathogenic or likely pathogenic (P/LP) mutation was identified in 11% (250/2187, 95% CI 10.1-12.8%). Affected high- and moderate-penetrance genes included BRCA2 (n = 11; 0.5%), TP53 (n = 8; 0.4%), NF1 (n = 8; 0.4%), CHEK2 (n = 21, 0.9% excluding common variant I157T), and the mismatch repair (MMR) genes (n = 22, 1.0%). Biallelic inactivation was identified in 8/8 tumors with a germline NF1 mutation, 7/8 tumors with a germline TP53 alteration, and 10/19 tumors with a heterozygous germline MMR defect. Gliomas/GNT with biallelic inactivation of an MMR gene were characterized by hypermutation, microsatellite instability, and a distinct clinical phenotype. Assessment of zygosity identifies biallelic inactivation of DNA double-strand break repair alterations in a minority of tumors, including BRCA2-deficient gliomas with increased genomic scarring attributable to homologous recombination deficiency, and refutes the contribution of the most common P/LP germline variants. Irrespective of gene, tumors with biallelic inactivation were diagnosed at a younger age than tumors without a germline variant (p = 3.5 x 10-6) and tumors with a monoallelic alteration (p = 0.00014). In conclusion, germline sequencing identifies a P/LP variant in a high proportion of patients with glioma/GNT. Biallelic inactivation was common in younger patients with germline variants and patients with neurofibromatosis type 1/Li-Fraumeni, but was only present in half of the patients with Lynch syndrome.</p> |