Prediction of melanoma metastasis using dermatoscopy deep features: An international multicentre cohort study Correspondence


Authors: Lallas, K.; Spyridonos, P.; Kittler, H.; Tschandl, P.; Liopyris, K.; Argenziano, G.; Bakos, R.; Braun, R.; Cabo, H.; Dika, E.; Malvehy, J.; Marghoob, A.; Puig, S.; Scope, A.; Stolz, W.; Tanaka, M.; Thomas, L.; Apalla, Z.; Vakirlis, E.; Zalaudek, I.; Lallas, A.
Title: Prediction of melanoma metastasis using dermatoscopy deep features: An international multicentre cohort study
Abstract: Whether dermatoscopy deep features could serve as biomarker for the prediction of melanoma metastasis remains an underexplored area in medical research. In this cohort of 712 patients from 10 centres in 3 continents, a support vector machine classifier that analysed deep features on dermatoscopic images demonstrated similar prognostic performance for metastasis in terms of AUC and true positive rate to current benchmarks of melanoma staging, namely Breslow thickness and ulceration. Deep features derived from dermatoscopy could predict early-stage melanomas with high metastatic potential, tailoring further treatment strategies.
Journal Title: British Journal of Dermatology
Volume: 191
Issue: 5
ISSN: 0007-0963
Publisher: Blackwell Publishing  
Publication status: Published
Date Published: 2024-11-01
Start Page: 847
End Page: 848
Language: English
ACCESSION: WOS:001294484300001
DOI: 10.1093/bjd/ljae281
PROVIDER: wos
PUBMED: 38992891
Notes: Source: Wos
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Ashfaq A Marghoob
    542 Marghoob