Prediction of melanoma metastasis using dermatoscopy deep features: an international multicentre cohort study Journal Article


Authors: Lallas, K.; Spyridonos, P.; Kittler, H.; Tschandl, P.; Liopyris, K.; Argenziano, G.; Bakos, R.; Braun, R.; Cabo, H.; Dika, E.; Malvehy, J.; Marghoob, A.; Puig, S.; Scope, A.; Stolz, W.; Tanaka, M.; Thomas, L.; Apalla, Z.; Vakirlis, E.; Zalaudek, I.; Lallas, A.
Article Title: Prediction of melanoma metastasis using dermatoscopy deep features: an international multicentre cohort study
Abstract: Whether dermatoscopy deep features could serve as biomarker for the prediction of melanoma metastasis remains an underexplored area in medical research. In this cohort of 712 patients from 10 centres in 3 continents, a support vector machine classifier that analysed deep features on dermatoscopic images demonstrated similar prognostic performance for metastasis in terms of AUC and true positive rate to current benchmarks of melanoma staging, namely Breslow thickness and ulceration. Deep features derived from dermatoscopy could predict early-stage melanomas with high metastatic potential, tailoring further treatment strategies.
Journal Title: British Journal of Dermatology
ISSN: 0007-0963
Publisher: Blackwell Publishing  
Publication status: Online ahead of print
Date Published: 2024-01-01
Online Publication Date: 2024-01-01
Language: English
ACCESSION: WOS:001294484300001
DOI: 10.1093/bjd/ljae281
PROVIDER: wos
Notes: Article; Early Access -- Source: Wos
Altmetric
Citation Impact
BMJ Impact Analytics