The lung cancer autochthonous model gene expression database enables cross-study comparisons of the transcriptomic landscapes across mouse models Journal Article


Authors: Cai, L.; Wu, F.; Zhou, Q.; Gao, Y.; Yao, B.; DeBerardinis, R. J.; Acquaah-Mensah, G. K.; Aidinis, V.; Beane, J. E.; Biswal, S.; Chen, T.; Concepcion-Crisol, C. P.; Grüner, B. M.; Jia, D.; Jones, R. A.; Kurie, J. M.; Lee, M. G.; Lindahl, P.; Lissanu, Y.; Lorz, C.; MacPherson, D.; Martinelli, R.; Mazur, P. K.; Mazzilli, S. A.; Mii, S.; Moll, H. P.; Moorehead, R. A.; Morrisey, E. E.; Ng, S. R.; Oser, M. G.; Pandiri, A. R.; Powell, C. A.; Ramadori, G.; Santos, M.; Snyder, E. L.; Sotillo, R.; Su, K. Y.; Taki, T.; Taparra, K.; Tran, P. T.; Xia, Y.; van Veen, J. E.; Winslow, M. M.; Xiao, G.; Rudin, C. M.; Oliver, T. G.; Xie, Y.; Minna, J. D.
Article Title: The lung cancer autochthonous model gene expression database enables cross-study comparisons of the transcriptomic landscapes across mouse models
Abstract: Lung cancer, the leading cause of cancer mortality, exhibits diverse histologic subtypes and genetic complexities. Numerous preclinical mouse models have been developed to study lung cancer, but data from these models are disparate, siloed, and difficult to compare in a centralized fashion. In this study, we established the Lung Cancer Autochthonous Model Gene Expression Database (LCAMGDB), an extensive repository of 1,354 samples from 77 transcriptomic datasets covering 974 samples from genetically engineered mouse models (GEMM), 368 samples from carcinogen-induced models, and 12 samples from a spontaneous model. Meticulous curation and collaboration with data depositors produced a robust and comprehensive database, enhancing the fidelity of the genetic landscape it depicts. The LCAMGDB aligned 859 tumors from GEMMs with human lung cancer mutations, enabling comparative analysis and revealing a pressing need to broaden the diversity of genetic aberrations modeled in the GEMMs. To accompany this resource, a web application was developed that offers researchers intuitive tools for in-depth gene expression analysis. With standardized reprocessing of gene expression data, the LCAMGDB serves as a powerful platform for cross-study comparison and lays the groundwork for future research, aiming to bridge the gap between mouse models and human lung cancer for improved translational relevance. ©2025 American Association for Cancer Research.
Keywords: genetics; comparative study; mouse; animal; animals; mice; gene expression profiling; lung neoplasms; pathology; disease model; lung tumor; gene expression regulation; gene expression regulation, neoplastic; disease models, animal; transcriptome; genetic database; databases, genetic; humans; human
Journal Title: Cancer Research
Volume: 85
Issue: 10
ISSN: 0008-5472
Publisher: American Association for Cancer Research  
Date Published: 2025-05-15
Start Page: 1769
End Page: 1783
Language: English
DOI: 10.1158/0008-5472.Can-24-1607
PUBMED: 40298430
PROVIDER: scopus
PMCID: PMC12081188
DOI/URL:
Notes: Article -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Charles Rudin
    489 Rudin