TRIDENT: Machine learning (ML) multimodal signatures to identify patients that would benefit most from tremelimumab (T) addition to durvalumab (D) + chemotherapy (CT) with data from the POSEIDON trial Meeting Abstract


Authors: Skoulidis, F.; Jabbour, S.; Garon, E. B.; Iyengar, P.; Scagliotti, G.; Ferrer, L.; Etchepare, G.; Gallinato, O.; Faure, J.; Bernard, P.; Colin, T.; Menu, P.; Lin, Y.; Cai, L.; Faria, J.; Remorino, A.; Luciani-Silverman, L.; Miller, K. P.; Dellamonica, D.; Zhang, Y.
Abstract Title: TRIDENT: Machine learning (ML) multimodal signatures to identify patients that would benefit most from tremelimumab (T) addition to durvalumab (D) + chemotherapy (CT) with data from the POSEIDON trial
Meeting Title: ESMO Congress 2024
Journal Title: Annals of Oncology
Volume: 35
Issue: Suppl. 2
Meeting Dates: 2024 Sep 13-17
Meeting Location: Barcelona, Spain
ISSN: 0923-7534
Publisher: Oxford University Press  
Date Published: 2024-09-01
Start Page: S842
End Page: S843
Language: English
ACCESSION: WOS:001326612901625
DOI: 10.1016/j.annonc.2024.08.1380
PROVIDER: wos
Notes: Meeting Abstract: 1325P -- Source: Wos
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Puneeth Iyengar
    42 Iyengar
Related MSK Work