A foundation model for clinical-grade computational pathology and rare cancers detection Journal Article


Authors: Vorontsov, E.; Bozkurt, A.; Casson, A.; Shaikovski, G.; Zelechowski, M.; Severson, K.; Zimmermann, E.; Hall, J.; Tenenholtz, N.; Fusi, N.; Yang, E.; Mathieu, P.; van Eck, A.; Lee, D.; Viret, J.; Robert, E.; Wang, Y. K.; Kunz, J. D.; Lee, M. C. H.; Bernhard, J. H.; Godrich, R. A.; Oakley, G.; Millar, E.; Hanna, M.; Wen, H.; Retamero, J. A.; Moye, W. A.; Yousfi, R.; Kanan, C.; Klimstra, D. S.; Rothrock, B.; Liu, S.; Fuchs, T. J.
Article Title: A foundation model for clinical-grade computational pathology and rare cancers detection
Abstract: The analysis of histopathology images with artificial intelligence aims to enable clinical decision support systems and precision medicine. The success of such applications depends on the ability to model the diverse patterns observed in pathology images. To this end, we present Virchow, the largest foundation model for computational pathology to date. In addition to the evaluation of biomarker prediction and cell identification, we demonstrate that a large foundation model enables pan-cancer detection, achieving 0.95 specimen-level area under the (receiver operating characteristic) curve across nine common and seven rare cancers. Furthermore, we show that with less training data, the pan-cancer detector built on Virchow can achieve similar performance to tissue-specific clinical-grade models in production and outperform them on some rare variants of cancer. Virchow’s performance gains highlight the value of a foundation model and open possibilities for many high-impact applications with limited amounts of labeled training data. © The Author(s) 2024.
Keywords: genetics; cancer grading; neoplasm; neoplasms; computational biology; pathology; tumor marker; artificial intelligence; diagnosis; bioinformatics; roc curve; receiver operating characteristic; rare disease; personalized medicine; pathology, clinical; rare diseases; procedures; neoplasm grading; humans; human; precision medicine; biomarkers, tumor
Journal Title: Nature Medicine
Volume: 30
Issue: 10
ISSN: 1078-8956
Publisher: Nature Publishing Group  
Date Published: 2024-10-01
Start Page: 2924
End Page: 2935
Language: English
DOI: 10.1038/s41591-024-03141-0
PUBMED: 39039250
PROVIDER: scopus
PMCID: PMC11485232
DOI/URL:
Notes: Article -- MSK Cancer Center Support Grant (P30 CA008748) acknowledged in PubMed and PDF -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Hannah Yong Wen
    301 Wen
  2. Matthew George Hanna
    101 Hanna
  3. Ellen Yang
    5 Yang