Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment Journal Article


Authors: Widman, A. J.; Shah, M.; Frydendahl, A.; Halmos, D.; Khamnei, C. C.; Øgaard, N.; Rajagopalan, S.; Arora, A.; Deshpande, A.; Hooper, W. F.; Quentin, J.; Bass, J.; Zhang, M.; Langanay, T.; Andersen, L.; Steinsnyder, Z.; Liao, W.; Rasmussen, M. H.; Henriksen, T. V.; Jensen, S. Ø; Nors, J.; Therkildsen, C.; Sotelo, J.; Brand, R.; Schiffman, J. S.; Shah, R. H.; Cheng, A. P.; Maher, C.; Spain, L.; Krause, K.; Frederick, D. T.; den Brok, W.; Lohrisch, C.; Shenkier, T.; Simmons, C.; Villa, D.; Mungall, A. J.; Moore, R.; Zaikova, E.; Cerda, V.; Kong, E.; Lai, D.; Malbari, M. S.; Marton, M.; Manaa, D.; Winterkorn, L.; Gelmon, K.; Callahan, M. K.; Boland, G.; Potenski, C.; Wolchok, J. D.; Saxena, A.; Turajlic, S.; Imielinski, M.; Berger, M. F.; Aparicio, S.; Altorki, N. K.; Postow, M. A.; Robine, N.; Andersen, C. L.; Landau, D. A.
Article Title: Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment
Abstract: In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGESNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGECNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGESNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition. © The Author(s), under exclusive licence to Springer Nature America, Inc. 2024.
Keywords: treatment response; single nucleotide polymorphism; genetics; polymorphism, single nucleotide; solid tumor; neoadjuvant therapy; neoplasm; neoplasms; melanoma; lung neoplasms; lung cancer; pathology; tumor marker; colorectal neoplasms; lung tumor; blood; minimal residual disease; neoplasm, residual; tumor burden; colorectal adenoma; colorectal tumor; aneuploidy; plasma; therapy; dna copy number variations; disease surveillance; copy number variation; machine learning; humans; human; article; whole genome sequencing; circulating tumor dna; deep learning; biomarkers, tumor; chloroplast dna
Journal Title: Nature Medicine
Volume: 30
Issue: 6
ISSN: 1078-8956
Publisher: Nature Publishing Group  
Date Published: 2024-06-01
Start Page: 1655
End Page: 1666
Language: English
DOI: 10.1038/s41591-024-03040-4
PUBMED: 38877116
PROVIDER: scopus
PMCID: PMC7616143
DOI/URL:
Notes: Article -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Jedd D Wolchok
    905 Wolchok
  2. Michael Andrew Postow
    361 Postow
  3. Margaret Kathleen Callahan
    197 Callahan
  4. Michael Forman Berger
    764 Berger
  5. Ronak Hasmukh Shah
    72 Shah
  6. Colleen Anne Maher
    16 Maher
  7. Adam J Widman
    7 Widman