Comparing ultra-hypofractionated proton versus photon therapy in extremity soft tissue sarcoma Journal Article


Authors: Thomas, R.; Chen, H.; Gogineni, E.; Halthore, A.; Floreza, B.; Esho-Voltaire, T.; Weaver, A.; Alcorn, S.; Ladra, M.; Li, H.; Deville, C. Jr
Article Title: Comparing ultra-hypofractionated proton versus photon therapy in extremity soft tissue sarcoma
Abstract: Purpose: Recent single institution, phase II evidence has demonstrated the feasibility and efficacy of ultra-hypofractionated, preoperative photon therapy in 5 fractions for the treatment of soft tissue sarcoma (STS). Our purpose was to evaluate the dosimetric benefits of modern scanning beam proton therapy compared with conventional photon radiation therapy (RT) for the neoadjuvant treatment of adult extremity STS. Materials and Methods: Existing proton and photon plans for 11 adult patients with STS of the lower extremities previously treated preoperativelywith neoadjuvantRT at our centerwere used to create proton therapy plans using Raystation Treatment Planning System v10.A. Volumes were delineated, and doses reported consistent with International Commission on Radiation Units and Measurements reports 50, 62, and 78. Target volumes were optimized such that 100% clinical target volume (CTV) was covered by 99% of the prescription dose. The prescribed dose was 30 Gy for PT and RT delivered in 5 fractions. For proton therapy, doses are reported in GyRBE = 1.1 Gy. The constraints for adjacent organs at risk (OARs) within 1 cmof the CTV were the following: femur V30Gy <= 50%, joint V30Gy < 50%, femoral head V30Gy <= 5 cm(3), strip V12 <= 10%, and skin V12, 50%. Target coverage goals, OAR constraints, and integral dose were compared by Student t test with P < .05 significance. Results: A minimum 99% CTV coverage was achieved for all plans. OAR dose constraints were achieved for all proton and photon plans; however, mean doses to the femur (10.7 +/- 8.5 vs 16.1 +/- 7.7 GyRBE), femoral head (2.0 +/- 4.4 vs 3.6 +/- 6.4 GyRBE), and proximal joint (1.8 62.4 vs 3.5 +/- 4.4GyRBE) were all significantly lowerwithPT vs intensity-modulated radiation therapy (IMRT) (all P <.05). Integral dosewas significantly reduced for proton vs photon plans. Conformity and heterogeneity indices were significantly better for proton therapy. Conclusion: Proton therapy maintained target coverage while significantly reducing integral and mean doses to the proximal organs at risk compared with RT. Further prospective investigation is warranted to validate these findings and potential benefit in the management of adult STS.
Keywords: radiation; soft tissue sarcoma; stereotactic body radiation therapy; hypofractionation; postoperative radiotherapy; toxicities; neoadjuvant; trial; radiation-therapy; proton therapy; beam therapy; preoperative radiation; stereotactic body proton therapy; ultra-hypofractionation
Journal Title: International Journal of Particle Therapy
Volume: 9
Issue: 3
ISSN: 2331-5180
Publisher: Particle Therapy Cooperative Group  
Date Published: 2023-01-01
Start Page: 30
End Page: 39
Language: English
ACCESSION: WOS:001135630800004
DOI: 10.14338/ijpt-22-00022.1
PROVIDER: wos
PMCID: PMC9875823
PUBMED: 36721484
Notes: Article -- Source: Wos
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Rehema Jamila Thomas
    1 Thomas