Editorial for “deep learning radiomics model of dynamic contrast-enhanced MRI for evaluating vessels encapsulating tumor clusters and prognosis in hepatocellular carcinoma” Editorial


Author: Chernyak, V.
Title: Editorial for “deep learning radiomics model of dynamic contrast-enhanced MRI for evaluating vessels encapsulating tumor clusters and prognosis in hepatocellular carcinoma”
Keywords: immunohistochemistry; cancer survival; treatment outcome; excision; overall survival; sorafenib; hepatitis b; liver cell carcinoma; clinical practice; cd34 antigen; metastasis; clinical assessment; editorial; validation study; prediction; health care utilization; artificial intelligence; cancer cell; clinical evaluation; cell migration; stroma; high risk population; radiofrequency ablation; dynamic contrast-enhanced magnetic resonance imaging; cell invasion; predictive value; recurrence free survival; epithelial mesenchymal transition; learning algorithm; cancer prognosis; gadoxetic acid; human; deep learning; radiomics; blood vessel wall
Journal Title: Journal of Magnetic Resonance Imaging
Volume: 59
Issue: 1
ISSN: 1053-1807
Publisher: Wiley Blackwell  
Date Published: 2024-01-01
Start Page: 120
End Page: 121
Language: English
DOI: 10.1002/jmri.28775
PUBMED: 37165916
PROVIDER: scopus
DOI/URL:
Notes: Editorial -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors