Metaplastic breast cancer: Current understanding and future directions Review


Authors: Thomas, A.; Douglas, E.; Reis-Filho, J. S.; Gurcan, M. N.; Wen, H. Y.
Review Title: Metaplastic breast cancer: Current understanding and future directions
Abstract: Metaplastic breast cancers (MBC) encompass a group of highly heterogeneous tumors which share the ability to differentiate into squamous, mesenchymal or neuroectodermal components. While often termed rare breast tumors, given the relatively high prevalence of breast cancer, they are seen with some frequency. Depending upon the definition applied, MBC represents 0.2% to 1% of breast cancers diagnosed in the United States. Less is known about the epidemiology of MBC globally, though a growing number of reports are providing information on this. These tumors are often more advanced at presentation relative to breast cancer broadly. While more indolent subtypes exist, the majority of MBC subtypes are associated with inferior survival. MBC is most commonly of triple-negative phenotype. In less common hormone receptor positive MBCs, hormone receptor status appears not to be prognostic. In contrast, relatively rare HER2-positive MBCs are associated with superior outcomes. Multiple potentially targetable molecular features are overrepresented in MBC including DNA repair deficiency signatures and PIK3/AKT/mTOR and WNT pathways alterations. Data on the prevalence of targets for novel antibody-drug conjugates is also emerging. While chemotherapy appears to be less active in MBC than in other breast cancer subtypes, efficacy is seen in some MBCs. Disease-specific trials, as well as reports of exceptional responses, may provide clues for novel approaches to this often hard-to-treat breast cancer. Strategies which harness newer research tools, such as large data and artificial intelligence hold the promise of overcoming historic barriers to the study of uncommon tumors and could markedly advance disease-specific understanding in MBC. © 2023 Elsevier Inc.
Keywords: genetics; metabolism; breast cancer; breast neoplasms; tumor marker; artificial intelligence; breast tumor; spindle cell; wnt signaling; digital pathology; wnt signaling pathway; rare; humans; prognosis; human; female; metaplastic; biomarkers, tumor
Journal Title: Clinical Breast Cancer
Volume: 23
Issue: 8
ISSN: 1526-8209
Publisher: Elsevier Inc.  
Date Published: 2023-12-01
Start Page: 775
End Page: 783
Language: English
DOI: 10.1016/j.clbc.2023.04.004
PUBMED: 37179225
PROVIDER: scopus
PMCID: PMC10584986
DOI/URL:
Notes: Review -- MSK Cancer Center Support Grant (P30 CA008748) acknowledged in PubMed and PDF -- Source: Scopus
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Hannah Yong Wen
    301 Wen