Interpretable machine learning for choosing radiation dose-volume constraints on cardio-pulmonary substructures associated with overall survival in NRG oncology RTOG 0617 Journal Article


Authors: Lee, S. H.; Geng, H.; Arnold, J.; Caruana, R.; Fan, Y.; Rosen, M. A.; Apte, A. P.; Deasy, J. O.; Bradley, J. D.; Xiao, Y.
Article Title: Interpretable machine learning for choosing radiation dose-volume constraints on cardio-pulmonary substructures associated with overall survival in NRG oncology RTOG 0617
Journal Title: International Journal of Radiation Oncology, Biology, Physics
Volume: 117
Issue: 5
ISSN: 0360-3016
Publisher: Elsevier Inc.  
Date Published: 2023-12-01
Start Page: 1270
End Page: 1286
Language: English
DOI: 10.1016/j.ijrobp.2023.06.009
PROVIDER: EBSCOhost
PROVIDER: cinahl
PUBMED: 37343707
PMCID: PMC10728350
DOI/URL:
Notes: Accession Number: 173518692 -- Entry Date: In Process -- Revision Date: 20231114 -- Publication Type: Journal Article -- Journal Subset: Biomedical; Peer Reviewed; USA -- NLM UID: 7603616. -- Source: Cinahl
Altmetric
Citation Impact
BMJ Impact Analytics
MSK Authors
  1. Joseph Owen Deasy
    524 Deasy
  2. Aditya Apte
    203 Apte